百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程字典 > 正文

详解SQL中Groupings Sets 语句的功能和底层实现逻辑

toyiye 2024-06-21 12:35 9 浏览 0 评论

摘要:本文首先简单介绍 Grouping Sets 的用法,然后以 Spark SQL 作为切入点,深入解析 Grouping Sets 的实现机制。

本文分享自华为云社区《深入理解 SQL 中的 Grouping Sets 语句-云社区-华为云》,作者:元闰子。

前言

SQL 中 Group By 语句大家都很熟悉,根据指定的规则对数据进行分组,常常和聚合函数一起使用。

比如,考虑有表 dealer,表中数据如下:


如果执行 SQL 语句 SELECT id, sum(quantity) FROM dealer GROUP BY id ORDER BY id,会得到如下结果:



+---+-------------+

| id|sum(quantity)|

+---+-------------+

|100| 32|

|200| 33|

|300| 13|

+---+-------------+

上述 SQL 语句的意思就是对数据按 id 列进行分组,然后在每个分组内对 quantity 列进行求和。

Group By 语句除了上面的简单用法之外,还有更高级的用法,常见的是 Grouping Sets、RollUp 和 Cube,它们在 OLAP 时比较常用。其中,RollUp 和 Cube 都是以 Grouping Sets 为基础实现的,因此,弄懂了 Grouping Sets,也就理解了 RollUp 和 Cube 。

本文首先简单介绍 Grouping Sets 的用法,然后以 Spark SQL 作为切入点,深入解析 Grouping Sets 的实现机制。

Spark SQL 是 Apache Spark 大数据处理框架的一个子模块,用来处理结构化信息。它可以将 SQL 语句翻译多个任务在 Spark 集群上执行,允许用户直接通过 SQL 来处理数据,大大提升了易用性。

Grouping Sets 简介

Spark SQL 官方文档中 SQL Syntax 一节对 Grouping Sets 语句的描述如下:

Groups the rows for each grouping set specified after GROUPING SETS. (... 一些举例) This clause is a shorthand for a UNION ALL where each leg of the UNION ALL operator performs aggregation of each grouping set specified in the GROUPING SETS clause. (... 一些举例)

也即,Grouping Sets 语句的作用是指定几个 grouping set 作为 Group By 的分组规则,然后再将结果联合在一起。它的效果和,先分别对这些 grouping set 进行 Group By 分组之后,再通过 Union All 将结果联合起来,是一样的。

比如,对于 dealer 表,Group By Grouping Sets ((city, car_model), (city), (car_model), ()) 和 Union All((Group By city, car_model), (Group By city), (Group By car_model), 全局聚合) 的效果是相同的:

先看 Grouping Sets 版的执行结果:


spark-sql> SELECT city, car_model, sum(quantity) AS sum FROM dealer

> GROUP BY GROUPING SETS ((city, car_model), (city), (car_model), ())

> ORDER BY city, car_model;

+--------+------------+---+

| city| car_model|sum|

+--------+------------+---+

| null| null| 78|

| null|Honda Accord| 33|

| null| Honda CRV| 10|

| null| Honda Civic| 35|

| Dublin| null| 33|

| Dublin|Honda Accord| 10|

| Dublin| Honda CRV| 3|

| Dublin| Honda Civic| 20|

| Fremont| null| 32|

| Fremont|Honda Accord| 15|

| Fremont| Honda CRV| 7|

| Fremont| Honda Civic| 10|

|San Jose| null| 13|

|San Jose|Honda Accord| 8|

|San Jose| Honda Civic| 5|

+--------+------------+---+

再看 Union All 版的执行结果:


spark-sql> (SELECT city, car_model, sum(quantity) AS sum FROM dealer GROUP BY city, car_model) UNION ALL

> (SELECT city, NULL as car_model, sum(quantity) AS sum FROM dealer GROUP BY city) UNION ALL

> (SELECT NULL as city, car_model, sum(quantity) AS sum FROM dealer GROUP BY car_model) UNION ALL

> (SELECT NULL as city, NULL as car_model, sum(quantity) AS sum FROM dealer)

> ORDER BY city, car_model;

+--------+------------+---+

| city| car_model|sum|

+--------+------------+---+

| null| null| 78|

| null|Honda Accord| 33|

| null| Honda CRV| 10|

| null| Honda Civic| 35|

| Dublin| null| 33|

| Dublin|Honda Accord| 10|

| Dublin| Honda CRV| 3|

| Dublin| Honda Civic| 20|

| Fremont| null| 32|

| Fremont|Honda Accord| 15|

| Fremont| Honda CRV| 7|

| Fremont| Honda Civic| 10|

|San Jose| null| 13|

|San Jose|Honda Accord| 8|

|San Jose| Honda Civic| 5|

+--------+------------+---+

两版的查询结果完全一样。

Grouping Sets 的执行计划

从执行结果上看,Grouping Sets 版本和 Union All 版本的 SQL 是等价的,但 Grouping Sets 版本更加简洁。

那么,Grouping Sets 仅仅只是 Union All 的一个缩写,或者语法糖吗

为了进一步探究 Grouping Sets 的底层实现是否和 Union All 是一致的,我们可以来看下两者的执行计划。

首先,我们通过 explain extended 来查看 Union All 版本的 Optimized Logical Plan:


spark-sql> explain extended (SELECT city, car_model, sum(quantity) AS sum FROM dealer GROUP BY city, car_model) UNION ALL(SELECT city, NULL as car_model, sum(quantity) AS sum FROM dealer GROUP BY city) UNION ALL (SELECT NULL as city, car_model, sum(quantity) AS sum FROM dealer GROUP BY car_model) UNION ALL (SELECT NULL as city, NULL as car_model, sum(quantity) AS sum FROM dealer) ORDER BY city, car_model;

== Parsed Logical Plan ==

...

== Analyzed Logical Plan ==

...

== Optimized Logical Plan ==

Sort [city#93 ASC NULLS FIRST, car_model#94 ASC NULLS FIRST], true

+- Union false, false

:- Aggregate [city#93, car_model#94], [city#93, car_model#94, sum(quantity#95) AS sum#79L]

: +- Project [city#93, car_model#94, quantity#95]

: +- HiveTableRelation [`default`.`dealer`, ..., Data Cols: [id#92, city#93, car_model#94, quantity#95], Partition Cols: []]

:- Aggregate [city#97], [city#97, null AS car_model#112, sum(quantity#99) AS sum#81L]

: +- Project [city#97, quantity#99]

: +- HiveTableRelation [`default`.`dealer`, ..., Data Cols: [id#96, city#97, car_model#98, quantity#99], Partition Cols: []]

:- Aggregate [car_model#102], [null AS city#113, car_model#102, sum(quantity#103) AS sum#83L]

: +- Project [car_model#102, quantity#103]

: +- HiveTableRelation [`default`.`dealer`, ..., Data Cols: [id#100, city#101, car_model#102, quantity#103], Partition Cols: []]

+- Aggregate [null AS city#114, null AS car_model#115, sum(quantity#107) AS sum#86L]

+- Project [quantity#107]

+- HiveTableRelation [`default`.`dealer`, ..., Data Cols: [id#104, city#105, car_model#106, quantity#107], Partition Cols: []]

== Physical Plan ==

...

从上述的 Optimized Logical Plan 可以清晰地看出 Union All 版本的执行逻辑:

  1. 执行每个子查询语句,计算得出查询结果。其中,每个查询语句的逻辑是这样的:在 HiveTableRelation 节点对 dealer 表进行全表扫描。在 Project 节点选出与查询语句结果相关的列,比如对于子查询语句 SELECT NULL as city, NULL as car_model, sum(quantity) AS sum FROM dealer,只需保留 quantity 列即可。在 Aggregate 节点完成 quantity 列对聚合运算。在上述的 Plan 中,Aggregate 后面紧跟的就是用来分组的列,比如 Aggregate [city#902] 就表示根据 city 列来进行分组。
  2. Union 节点完成对每个子查询结果的联合。
  3. 最后,在 Sort 节点完成对数据的排序,上述 Plan 中 Sort [city#93 ASC NULLS FIRST, car_model#94 ASC NULLS FIRST] 就表示根据 city 和 car_model 列进行升序排序。

接下来,我们通过 explain extended 来查看 Grouping Sets 版本的 Optimized Logical Plan:


spark-sql> explain extended SELECT city, car_model, sum(quantity) AS sum FROM dealer GROUP BY GROUPING SETS ((city, car_model), (city), (car_model), ()) ORDER BY city, car_model;

== Parsed Logical Plan ==

...

== Analyzed Logical Plan ==

...

== Optimized Logical Plan ==

Sort [city#138 ASC NULLS FIRST, car_model#139 ASC NULLS FIRST], true

+- Aggregate [city#138, car_model#139, spark_grouping_id#137L], [city#138, car_model#139, sum(quantity#133) AS sum#124L]

+- Expand [[quantity#133, city#131, car_model#132, 0], [quantity#133, city#131, null, 1], [quantity#133, null, car_model#132, 2], [quantity#133, null, null, 3]], [quantity#133, city#138, car_model#139, spark_grouping_id#137L]

+- Project [quantity#133, city#131, car_model#132]

+- HiveTableRelation [`default`.`dealer`, org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe, Data Cols: [id#130, city#131, car_model#132, quantity#133], Partition Cols: []]

== Physical Plan ==

...

从 Optimized Logical Plan 来看,Grouping Sets 版本要简洁很多!具体的执行逻辑是这样的:

  1. HiveTableRelation 节点对 dealer 表进行全表扫描。
  2. Project 节点选出与查询语句结果相关的列。
  3. 接下来的 Expand 节点是关键,数据经过该节点后,多出了 spark_grouping_id 列。从 Plan 中可以看出来,Expand 节点包含了 Grouping Sets 里的各个 grouping set 信息,比如 [quantity#133, city#131, null, 1] 对应的就是 (city) 这一 grouping set。而且,每个 grouping set 对应的 spark_grouping_id 列的值都是固定的,比如 (city) 对应的 spark_grouping_id 为 1。
  4. Aggregate 节点完成 quantity 列对聚合运算,其中分组的规则为 city, car_model, spark_grouping_id。注意,数据经过 Aggregate 节点后,spark_grouping_id 列被删除了!
  5. 最后,在 Sort 节点完成对数据的排序。

从 Optimized Logical Plan 来看,虽然 Union All 版本和 Grouping Sets 版本的效果一致,但它们的底层实现有着巨大的差别。

其中,Grouping Sets 版本的 Plan 中最关键的是 Expand 节点,目前,我们只知道数据经过它之后,多出了 spark_grouping_id 列。而且从最终结果来看,spark_grouping_id 只是 Spark SQL 的内部实现细节,对用户并不体现。那么:

  1. Expand 的实现逻辑是怎样的,为什么能达到 Union All 的效果?
  2. Expand 节点的输出数据是怎样的
  3. spark_grouping_id 列的作用是什么

通过 Physical Plan,我们发现 Expand 节点对应的算子名称也是 Expand:


== Physical Plan ==

AdaptiveSparkPlan isFinalPlan=false

+- Sort [city#138 ASC NULLS FIRST, car_model#139 ASC NULLS FIRST], true, 0

+- Exchange rangepartitioning(city#138 ASC NULLS FIRST, car_model#139 ASC NULLS FIRST, 200), ENSURE_REQUIREMENTS, [plan_id=422]

+- HashAggregate(keys=[city#138, car_model#139, spark_grouping_id#137L], functions=[sum(quantity#133)], output=[city#138, car_model#139, sum#124L])

+- Exchange hashpartitioning(city#138, car_model#139, spark_grouping_id#137L, 200), ENSURE_REQUIREMENTS, [plan_id=419]

+- HashAggregate(keys=[city#138, car_model#139, spark_grouping_id#137L], functions=[partial_sum(quantity#133)], output=[city#138, car_model#139, spark_grouping_id#137L, sum#141L])

+- Expand [[quantity#133, city#131, car_model#132, 0], [quantity#133, city#131, null, 1], [quantity#133, null, car_model#132, 2], [quantity#133, null, null, 3]], [quantity#133, city#138, car_model#139, spark_grouping_id#137L]

+- Scan hive default.dealer [quantity#133, city#131, car_model#132], HiveTableRelation [`default`.`dealer`, ..., Data Cols: [id#130, city#131, car_model#132, quantity#133], Partition Cols: []]

带着前面的几个问题,接下来我们深入 Spark SQL 的 Expand 算子源码寻找答案。

Expand 算子的实现

Expand 算子在 Spark SQL 源码中的实现为 ExpandExec 类(Spark SQL 中的算子实现类的命名都是 XxxExec 的格式,其中 Xxx 为具体的算子名,比如 Project 算子的实现类为 ProjectExec),核心代码如下:


/**

* Apply all of the GroupExpressions to every input row, hence we will get

* multiple output rows for an input row.

* @param projections The group of expressions, all of the group expressions should

* output the same schema specified bye the parameter `output`

* @param output The output Schema

* @param child Child operator

*/

case class ExpandExec(

projections: Seq[Seq[Expression]],

output: Seq[Attribute],

child: SparkPlan)

extends UnaryExecNode with CodegenSupport {



...

// 关键点1,将child.output,也即上游算子输出数据的schema,

// 绑定到表达式数组exprs,以此来计算输出数据

private[this] val projection =

(exprs: Seq[Expression]) => UnsafeProjection.create(exprs, child.output)

?

// doExecute()方法为Expand算子执行逻辑所在

protected override def doExecute(): RDD[InternalRow] = {

val numOutputRows = longMetric("numOutputRows")

?

// 处理上游算子的输出数据,Expand算子的输入数据就从iter迭代器获取

child.execute().mapPartitions { iter =>

// 关键点2,projections对应了Grouping Sets里面每个grouping set的表达式,

// 表达式输出数据的schema为this.output, 比如 (quantity, city, car_model, spark_grouping_id)

// 这里的逻辑是为它们各自生成一个UnsafeProjection对象,通过该对象的apply方法就能得出Expand算子的输出数据

val groups = projections.map(projection).toArray

new Iterator[InternalRow] {

private[this] var result: InternalRow = _

private[this] var idx = -1 // -1 means the initial state

private[this] var input: InternalRow = _

?

override final def hasNext: Boolean = (-1 < idx && idx < groups.length) || iter.hasNext

?

override final def next(): InternalRow = {

// 关键点3,对于输入数据的每一条记录,都重复使用N次,其中N的大小对应了projections数组的大小,

// 也即Grouping Sets里指定的grouping set的数量

if (idx <= 0) {

// in the initial (-1) or beginning(0) of a new input row, fetch the next input tuple

input = iter.next()

idx = 0

}

// 关键点4,对输入数据的每一条记录,通过UnsafeProjection计算得出输出数据,

// 每个grouping set对应的UnsafeProjection都会对同一个input计算一遍

result = groups(idx)(input)

idx += 1

?

if (idx == groups.length && iter.hasNext) {

idx = 0

}

?

numOutputRows += 1

result

}

}

}

}

...

}

ExpandExec 的实现并不复杂,想要理解它的运作原理,关键是看懂上述源码中提到的 4 个关键点。

关键点 1 和 关键点 2 是基础,关键点 2 中的 groups 是一个 UnsafeProjection[N] 数组类型,其中每个 UnsafeProjection 代表了 Grouping Sets 语句里指定的 grouping set,它的定义是这样的:


// A projection that returns UnsafeRow.

abstract class UnsafeProjection extends Projection {

override def apply(row: InternalRow): UnsafeRow

}

?

// The factory object for `UnsafeProjection`.

object UnsafeProjection

extends CodeGeneratorWithInterpretedFallback[Seq[Expression], UnsafeProjection] {

// Returns an UnsafeProjection for given sequence of Expressions, which will be bound to

// `inputSchema`.

def create(exprs: Seq[Expression], inputSchema: Seq[Attribute]): UnsafeProjection = {

create(bindReferences(exprs, inputSchema))

}

...

}

UnsafeProjection 起来了类似列投影的作用,其中, apply 方法根据创建时的传参 exprs 和 inputSchema,对输入记录进行列投影,得出输出记录。

比如,前面的 GROUPING SETS ((city, car_model), (city), (car_model), ()) 例子,它对应的 groups 是这样的:

其中,AttributeReference 类型的表达式,在计算时,会直接引用输入数据对应列的值;Iteral 类型的表达式,在计算时,值是固定的。

关键点 3 和 关键点 4 是 Expand 算子的精华所在,ExpandExec 通过这两段逻辑,将每一个输入记录,扩展(Expand)成 N 条输出记录。

关键点 4 中 groups(idx)(input) 等同于 groups(idx).apply(input) 。

还是以前面 GROUPING SETS ((city, car_model), (city), (car_model), ()) 为例子,效果是这样的:

到这里,我们已经弄清楚 Expand 算子的工作原理,再回头看前面提到的 3 个问题,也不难回答了:

1、Expand 的实现逻辑是怎样的,为什么能达到 Union All 的效果?

如果说 Union All 是先聚合再联合,那么 Expand 就是先联合再聚合。Expand 利用 groups 里的 N 个表达式对每条输入记录进行计算,扩展成 N 条输出记录。后面再聚合时,就能达到与 Union All 一样的效果了。

2、Expand 节点的输出数据是怎样的

在 schema 上,Expand 输出数据会比输入数据多出 spark_grouping_id 列;在记录数上,是输入数据记录数的 N 倍。

3、spark_grouping_id 列的作用是什么

spark_grouping_id 给每个 grouping set 进行编号,这样,即使在 Expand 阶段把数据先联合起来,在 Aggregate 阶段(把 spark_grouping_id 加入到分组规则)也能保证数据能够按照每个 grouping set 分别聚合,确保了结果的正确性。

查询性能对比

从前文可知,Grouping Sets 和 Union All 两个版本的 SQL 语句有着一样的效果,但是它们的执行计划却有着巨大的差别。下面,我们将比对两个版本之间的执行性能差异。

spark-sql 执行完 SQL 语句之后会打印耗时信息,我们对两个版本的 SQL 分别执行 10 次,得到如下信息:


// Grouping Sets 版本执行10次的耗时信息

// SELECT city, car_model, sum(quantity) AS sum FROM dealer GROUP BY GROUPING SETS ((city, car_model), (city), (car_model), ()) ORDER BY city, car_model;

Time taken: 0.289 seconds, Fetched 15 row(s)

Time taken: 0.251 seconds, Fetched 15 row(s)

Time taken: 0.259 seconds, Fetched 15 row(s)

Time taken: 0.258 seconds, Fetched 15 row(s)

Time taken: 0.296 seconds, Fetched 15 row(s)

Time taken: 0.247 seconds, Fetched 15 row(s)

Time taken: 0.298 seconds, Fetched 15 row(s)

Time taken: 0.286 seconds, Fetched 15 row(s)

Time taken: 0.292 seconds, Fetched 15 row(s)

Time taken: 0.282 seconds, Fetched 15 row(s)

?

// Union All 版本执行10次的耗时信息

// (SELECT city, car_model, sum(quantity) AS sum FROM dealer GROUP BY city, car_model) UNION ALL (SELECT city, NULL as car_model, sum(quantity) AS sum FROM dealer GROUP BY city) UNION ALL (SELECT NULL as city, car_model, sum(quantity) AS sum FROM dealer GROUP BY car_model) UNION ALL (SELECT NULL as city, NULL as car_model, sum(quantity) AS sum FROM dealer) ORDER BY city, car_model;

Time taken: 0.628 seconds, Fetched 15 row(s)

Time taken: 0.594 seconds, Fetched 15 row(s)

Time taken: 0.591 seconds, Fetched 15 row(s)

Time taken: 0.607 seconds, Fetched 15 row(s)

Time taken: 0.616 seconds, Fetched 15 row(s)

Time taken: 0.64 seconds, Fetched 15 row(s)

Time taken: 0.623 seconds, Fetched 15 row(s)

Time taken: 0.625 seconds, Fetched 15 row(s)

Time taken: 0.62 seconds, Fetched 15 row(s)

Time taken: 0.62 seconds, Fetched 15 row(s)

可以算出,Grouping Sets 版本的 SQL 平均耗时为 0.276s;Union All 版本的 SQL 平均耗时为 0.616s,是前者的 2.2 倍

所以,Grouping Sets 版本的 SQL 不仅在表达上更加简洁,在性能上也更加高效

RollUp 和 Cube

Group By 的高级用法中,还有 RollUp 和 Cube 两个比较常用。

首先,我们看下 RollUp 语句

Spark SQL 官方文档中 SQL Syntax 一节对 RollUp 语句的描述如下:

Specifies multiple levels of aggregations in a single statement. This clause is used to compute aggregations based on multiple grouping sets. ROLLUP is a shorthand for GROUPING SETS. (... 一些例子)

官方文档中,把 RollUp 描述为 Grouping Sets 的简写,等价规则为:RollUp(A, B, C) == Grouping Sets((A, B, C), (A, B), (A), ())。

比如,Group By RollUp(city, car_model) 就等同于 Group By Grouping Sets((city, car_model), (city), ())。

下面,我们通过 expand extended 看下 RollUp 版本 SQL 的 Optimized Logical Plan:


spark-sql> explain extended SELECT city, car_model, sum(quantity) AS sum FROM dealer GROUP BY ROLLUP(city, car_model) ORDER BY city, car_model;

== Parsed Logical Plan ==

...

== Analyzed Logical Plan ==

...

== Optimized Logical Plan ==

Sort [city#2164 ASC NULLS FIRST, car_model#2165 ASC NULLS FIRST], true

+- Aggregate [city#2164, car_model#2165, spark_grouping_id#2163L], [city#2164, car_model#2165, sum(quantity#2159) ASsum#2150L]

+- Expand [[quantity#2159, city#2157, car_model#2158, 0], [quantity#2159, city#2157, null, 1], [quantity#2159, null, null, 3]], [quantity#2159, city#2164, car_model#2165, spark_grouping_id#2163L]

+- Project [quantity#2159, city#2157, car_model#2158]

+- HiveTableRelation [`default`.`dealer`, ..., Data Cols: [id#2156, city#2157, car_model#2158, quantity#2159], Partition Cols: []]

== Physical Plan ==

...

从上述 Plan 可以看出,RollUp 底层实现用的也是 Expand 算子,说明 RollUp 确实是基于 Grouping Sets 实现的。 而且 Expand [[quantity#2159, city#2157, car_model#2158, 0], [quantity#2159, city#2157, null, 1], [quantity#2159, null, null, 3]] 也表明 RollUp 符合等价规则。

下面,我们按照同样的思路,看下 Cube 语句

Spark SQL 官方文档中 SQL Syntax 一节对 Cube 语句的描述如下:

CUBE clause is used to perform aggregations based on combination of grouping columns specified in the GROUP BYclause. CUBE is a shorthand for GROUPING SETS. (... 一些例子)

同样,官方文档把 Cube 描述为 Grouping Sets 的简写,等价规则为:Cube(A, B, C) == Grouping Sets((A, B, C), (A, B), (A, C), (B, C), (A), (B), (C), ())。

比如,Group By Cube(city, car_model) 就等同于 Group By Grouping Sets((city, car_model), (city), (car_model), ())。

下面,我们通过 expand extended 看下 Cube 版本 SQL 的 Optimized Logical Plan:


spark-sql> explain extended SELECT city, car_model, sum(quantity) AS sum FROM dealer GROUP BY CUBE(city, car_model) ORDER BY city, car_model;

== Parsed Logical Plan ==

...

== Analyzed Logical Plan ==

...

== Optimized Logical Plan ==

Sort [city#2202 ASC NULLS FIRST, car_model#2203 ASC NULLS FIRST], true

+- Aggregate [city#2202, car_model#2203, spark_grouping_id#2201L], [city#2202, car_model#2203, sum(quantity#2197) ASsum#2188L]

+- Expand [[quantity#2197, city#2195, car_model#2196, 0], [quantity#2197, city#2195, null, 1], [quantity#2197, null, car_model#2196, 2], [quantity#2197, null, null, 3]], [quantity#2197, city#2202, car_model#2203, spark_grouping_id#2201L]

+- Project [quantity#2197, city#2195, car_model#2196]

+- HiveTableRelation [`default`.`dealer`, ..., Data Cols: [id#2194, city#2195, car_model#2196, quantity#2197], Partition Cols: []]

== Physical Plan ==

...

从上述 Plan 可以看出,Cube 底层用的也是 Expand 算子,说明 Cube 确实基于 Grouping Sets 实现,而且也符合等价规则。

所以,RollUp 和 Cube 可以看成是 Grouping Sets 的语法糖,在底层实现和性能上是一样的。

最后

本文重点讨论了 Group By 高级用法 Groupings Sets 语句的功能和底层实现。

虽然 Groupings Sets 的功能,通过 Union All 也能实现,但前者并非后者的语法糖,它们的底层实现完全不一样。Grouping Sets 采用的是先联合再聚合的思路,通过 spark_grouping_id 列来保证数据的正确性;Union All 则采用先聚合再联合的思路。Grouping Sets 在 SQL 语句表达和性能上都有更大的优势

Group By 的另外两个高级用法 RollUp 和 Cube 则可以看成是 Grouping Sets 的语法糖,它们的底层都是基于 Expand 算子实现,在性能上与直接使用 Grouping Sets 是一样的,但在 SQL 表达上更加简洁

参考

[1] Spark SQL Guide, Apache Spark

[2] apache spark 3.3 版本源码, Apache Spark, GitHub

点击下方,第一时间了解华为云新鲜技术~

华为云博客_大数据博客_AI博客_云计算博客_开发者中心-华为云

相关推荐

为何越来越多的编程语言使用JSON(为什么编程)

JSON是JavascriptObjectNotation的缩写,意思是Javascript对象表示法,是一种易于人类阅读和对编程友好的文本数据传递方法,是JavaScript语言规范定义的一个子...

何时在数据库中使用 JSON(数据库用json格式存储)

在本文中,您将了解何时应考虑将JSON数据类型添加到表中以及何时应避免使用它们。每天?分享?最新?软件?开发?,Devops,敏捷?,测试?以及?项目?管理?最新?,最热门?的?文章?,每天?花?...

MySQL 从零开始:05 数据类型(mysql数据类型有哪些,并举例)

前面的讲解中已经接触到了表的创建,表的创建是对字段的声明,比如:上述语句声明了字段的名称、类型、所占空间、默认值和是否可以为空等信息。其中的int、varchar、char和decimal都...

JSON对象花样进阶(json格式对象)

一、引言在现代Web开发中,JSON(JavaScriptObjectNotation)已经成为数据交换的标准格式。无论是从前端向后端发送数据,还是从后端接收数据,JSON都是不可或缺的一部分。...

深入理解 JSON 和 Form-data(json和formdata提交区别)

在讨论现代网络开发与API设计的语境下,理解客户端和服务器间如何有效且可靠地交换数据变得尤为关键。这里,特别值得关注的是两种主流数据格式:...

JSON 语法(json 语法 priority)

JSON语法是JavaScript语法的子集。JSON语法规则JSON语法是JavaScript对象表示法语法的子集。数据在名称/值对中数据由逗号分隔花括号保存对象方括号保存数组JS...

JSON语法详解(json的语法规则)

JSON语法规则JSON语法是JavaScript对象表示法语法的子集。数据在名称/值对中数据由逗号分隔大括号保存对象中括号保存数组注意:json的key是字符串,且必须是双引号,不能是单引号...

MySQL JSON数据类型操作(mysql的json)

概述mysql自5.7.8版本开始,就支持了json结构的数据存储和查询,这表明了mysql也在不断的学习和增加nosql数据库的有点。但mysql毕竟是关系型数据库,在处理json这种非结构化的数据...

JSON的数据模式(json数据格式示例)

像XML模式一样,JSON数据格式也有Schema,这是一个基于JSON格式的规范。JSON模式也以JSON格式编写。它用于验证JSON数据。JSON模式示例以下代码显示了基本的JSON模式。{"...

前端学习——JSON格式详解(后端json格式)

JSON(JavaScriptObjectNotation)是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。它基于JavaScriptProgrammingLa...

什么是 JSON:详解 JSON 及其优势(什么叫json)

现在程序员还有谁不知道JSON吗?无论对于前端还是后端,JSON都是一种常见的数据格式。那么JSON到底是什么呢?JSON的定义...

PostgreSQL JSON 类型:处理结构化数据

PostgreSQL提供JSON类型,以存储结构化数据。JSON是一种开放的数据格式,可用于存储各种类型的值。什么是JSON类型?JSON类型表示JSON(JavaScriptO...

JavaScript:JSON、三种包装类(javascript 包)

JOSN:我们希望可以将一个对象在不同的语言中进行传递,以达到通信的目的,最佳方式就是将一个对象转换为字符串的形式JSON(JavaScriptObjectNotation)-JS的对象表示法...

Python数据分析 只要1分钟 教你玩转JSON 全程干货

Json简介:Json,全名JavaScriptObjectNotation,JSON(JavaScriptObjectNotation(记号、标记))是一种轻量级的数据交换格式。它基于J...

比较一下JSON与XML两种数据格式?(json和xml哪个好)

JSON(JavaScriptObjectNotation)和XML(eXtensibleMarkupLanguage)是在日常开发中比较常用的两种数据格式,它们主要的作用就是用来进行数据的传...

取消回复欢迎 发表评论:

请填写验证码