百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程字典 > 正文

Pandas/Sklearn进行机器学习之特征筛选,有效提升模型性能

toyiye 2024-07-06 00:17 11 浏览 0 评论

作者:俊欣

来源:关于数据分析与可视化

今天小编来说说如何通过pandas以及sklearn这两个模块来对数据集进行特征筛选,毕竟有时候我们拿到手的数据集是非常庞大的,有着非常多的特征,减少这些特征的数量会带来许多的好处,例如

  • 提高预测的精准度
  • 降低过拟合的风险
  • 加快模型的训练速度
  • 增加模型的可解释性

事实上,很多时候也并非是特征数量越多训练出来的模型越好,当添加的特征多到一定程度的时候,模型的性能就会下降,从下图中我们可以看出,

因此我们需要找到哪些特征是最佳的使用特征,当然我们这里分连续型的变量以及离散型的变量来讨论,毕竟不同数据类型的变量处理的方式不同,我们先来看一下对于连续型的变量而言,特征选择到底是怎么来进行的。

计算一下各个变量之间的相关性

我们先导入所需要用到的模块以及导入数据集,并且用pandas模块来读取

from sklearn.datasets import load_boston
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.feature_selection import RFE
from sklearn.linear_model import RidgeCV, LassoCV, Ridge, Lasso

这次用到的数据集是机器学习中尤其是初学者经常碰到的,波士顿房价的数据集,其中我们要预测的这个对象是MEDV这一列

x = load_boston()
df = pd.DataFrame(x.data, columns = x.feature_names)
df["MEDV"] = x.target
X = df.drop("MEDV",1)   #将模型当中要用到的特征变量保留下来
y = df["MEDV"]          #最后要预测的对象
df.head()

output

      CRIM    ZN  INDUS  CHAS    NOX  ...    TAX  PTRATIO       B  LSTAT  MEDV
0  0.00632  18.0   2.31   0.0  0.538  ...  296.0     15.3  396.90   4.98  24.0
1  0.02731   0.0   7.07   0.0  0.469  ...  242.0     17.8  396.90   9.14  21.6
2  0.02729   0.0   7.07   0.0  0.469  ...  242.0     17.8  392.83   4.03  34.7
3  0.03237   0.0   2.18   0.0  0.458  ...  222.0     18.7  394.63   2.94  33.4
4  0.06905   0.0   2.18   0.0  0.458  ...  222.0     18.7  396.90   5.33  36.2

我们可以来看一下特征变量的数据类型

df.dtypes

output

CRIM       float64
ZN         float64
INDUS      float64
CHAS       float64
NOX        float64
RM         float64
AGE        float64
DIS        float64
RAD        float64
TAX        float64
PTRATIO    float64
B          float64
LSTAT      float64
MEDV       float64
dtype: object

我们看到都是清一色的连续型的变量,我们来计算一下自变量和因变量之间的相关性,通过seaborn模块当中的热力图来展示,代码如下

plt.figure(figsize=(10,8))
cor = df.corr()
sns.heatmap(cor, annot=True, cmap=plt.cm.Reds)
plt.show()

相关系数的值一般是在-1到1这个区间内波动的

  • 相关系数要是接近于0意味着变量之间的相关性并不强
  • 接近于-1意味着变量之间呈负相关的关系
  • 接近于1意味着变量之间呈正相关的关系

我们来看一下对于因变量而言,相关性比较高的自变量有哪些

# 筛选出于因变量之间的相关性
cor_target = abs(cor["MEDV"])
# 挑选于大于0.5的相关性系数
relevant_features = cor_target[cor_target>0.5]
relevant_features

output

RM         0.695360
PTRATIO    0.507787
LSTAT      0.737663
MEDV       1.000000
Name: MEDV, dtype: float64

筛选出3个相关性比较大的自变量来,然后我们来看一下自变量之间的相关性如何,要是自变量之间的相关性非常强的话,我们也只需要保留其中的一个就行,

print(df[["LSTAT","PTRATIO"]].corr())
print("=" * 50)
print(df[["RM","LSTAT"]].corr())
print("=" * 50)
print(df[["PTRATIO","RM"]].corr())

output

            LSTAT   PTRATIO
LSTAT    1.000000  0.374044
PTRATIO  0.374044  1.000000
==================================================
             RM     LSTAT
RM     1.000000 -0.613808
LSTAT -0.613808  1.000000
==================================================
          PTRATIO        RM
PTRATIO  1.000000 -0.355501
RM      -0.355501  1.000000

从上面的结果中我们可以看到,RM变量和LSTAT这个变量是相关性是比较高的,我们只需要保留其中一个就可以了,我们选择保留LSTAT这个变量,因为它与因变量之间的相关性更加高一些

递归消除法

我们可以尝试这么一种策略,我们选择一个基准模型,起初将所有的特征变量传进去,我们再确认模型性能的同时通过对特征变量的重要性进行排序,去掉不重要的特征变量,然后不断地重复上面的过程直到达到所需数量的要选择的特征变量。

LR= LinearRegression()
# 挑选出7个相关的变量
rfe_model = RFE(model, 7)
# 交给模型去进行拟合
X_rfe = rfe_model.fit_transform(X,y)  
LR.fit(X_rfe,y)
# 输出各个变量是否是相关的,并且对其进行排序
print(rfe_model.support_)
print(rfe_model.ranking_)

output

[False False False  True  True  True False  True  True False  True False
  True]
[2 4 3 1 1 1 7 1 1 5 1 6 1]

第一行的输出包含TrueFalse,其中True代表的是相关的变量对应下一行的输出中的1,而False包含的是不相关的变量,然后我们需要所需要多少个特征变量,才能够使得模型的性能达到最优

#将13个特征变量都依次遍历一遍
feature_num_list=np.arange(1,13)
# 定义一个准确率
high_score=0
# 最优需要多少个特征变量
num_of_features=0           
score_list =[]
for n in range(len(feature_num_list)):
    X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.3, random_state = 0)
    model = LinearRegression()
    rfe_model = RFE(model,feature_num_list[n])
    X_train_rfe_model = rfe_model.fit_transform(X_train,y_train)
    X_test_rfe_model = rfe_model.transform(X_test)
    model.fit(X_train_rfe_model,y_train)
    score = model.score(X_test_rfe_model,y_test)
    score_list.append(score)
    if(score>high_score):
        high_score = score
        num_of_features = feature_num_list[n]
print("最优的变量是: %d个" %num_of_features)
print("%d个变量的准确率为: %f" % (num_of_features, high_score))

output

最优的变量是: 10个
10个变量的准确率为: 0.663581

从上面的结果可以看出10个变量对于整个模型来说是最优的,然后我们来看一下到底是哪10个特征变量

cols = list(X.columns)
model = LinearRegression()
# 初始化RFE模型,筛选出10个变量
rfe_model = RFE(model, 10)             
X_rfe = rfe.fit_transform(X,y)  
# 拟合训练模型
model.fit(X_rfe,y)              
df = pd.Series(rfe.support_,index = cols)
selected_features = df[df==True].index
print(selected_features)

output

Index(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'DIS', 'RAD', 'PTRATIO',
       'LSTAT'],
      dtype='object')

正则化

例如对于Lasso的正则化而言,对于不相关的特征而言,该算法会让其相关系数变为0,因此不相关的特征变量很快就会被排除掉了,只剩下相关的特征变量

lasso = LassoCV()
lasso.fit(X, y)
coef = pd.Series(lasso.coef_, index = X.columns)

然后我们看一下哪些变量的相关系数是0

print("Lasso算法挑选了 " + str(sum(coef != 0)) + " 个变量,然后去除掉了" +  str(sum(coef == 0)) + "个变量")

output

Lasso算法挑选了10个变量,然后去除掉了3个变量

我们来对计算出来的相关性系数排个序并且做一个可视化

imp_coef = coef.sort_values()
matplotlib.rcParams['figure.figsize'] = (8, 6)
imp_coef.plot(kind = "barh")
plt.title("Lasso Model Feature Importance")

output

可以看到当中有3个特征,‘NOX’、'CHAS'、'INDUS'的相关性为0

根据缺失值来进行判断

下面我们来看一下如何针对离散型的特征变量来做处理,首先我们可以根据缺失值的比重来进行判断,要是对于一个离散型的特征变量而言,绝大部分的值都是缺失的,那这个特征变量也就没有存在的必要了,我们可以针对这个思路在进行判断。

首先导入所需要用到的数据集

train = pd.read_csv("credit_example.csv")
train_labels = train['TARGET']
train = train.drop(columns = ['TARGET'])

我们可以先来计算一下数据集当中每个特征变量缺失值的比重

missing_series = train.isnull().sum() / train.shape[0]
df = pd.DataFrame(missing_series).rename(columns = {'index': '特征变量', 0: '缺失值比重'})
df.sort_values("缺失值比重", ascending = False).head()

output

                           缺失值比重
COMMONAREA_AVG            0.6953
COMMONAREA_MODE           0.6953
COMMONAREA_MEDI           0.6953
NONLIVINGAPARTMENTS_AVG   0.6945
NONLIVINGAPARTMENTS_MODE  0.6945

我们可以看到缺失值最高的比重将近有70%,我们也可以用可视化的根据来绘制一下缺失值比重的分布图

plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.figure(figsize = (7, 5))
plt.hist(df['缺失值比重'], bins = np.linspace(0, 1, 11), edgecolor = 'k', color = 'blue', linewidth = 2)
plt.xticks(np.linspace(0, 1, 11));
plt.xlabel('缺失值的比重', size = 14); 
plt.ylabel('特征变量的数量', size = 14); 
plt.title("缺失值分布图", size = 14);

output

我们可以看到有一部分特征变量,它们缺失值的比重在50%以上,有一些还在60%以上,我们可以去除掉当中的部分特征变量

计算特征的重要性

在基于树的众多模型当中,会去计算每个特征变量的重要性,也就是feature_importances_属性,得出各个特征变量的重要性程度之后再进行特征的筛选

from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier()
# 模型拟合数据
clf.fit(X,Y)
feat_importances = pd.Series(clf.feature_importances_, index=X.columns)
# 筛选出特征的重要性程度最大的10个特征
feat_importances.nlargest(10)

我们同时也可以对特征的重要性程度进行可视化,

feat_importances.nlargest(10).plot(kind='barh', figsize = (8, 6))

output

除了随机森林之外,基于树的算法模型还有很多,如LightGBMXGBoost等等,大家也都可以通过对特征重要性的计算来进行特征的筛选

Select_K_Best算法

Sklearn模块当中还提供了SelectKBest的API,针对回归问题或者是分类问题,我们挑选合适的模型评估指标,然后设定K值也就是既定的特征变量的数量,进行特征的筛选。

假定我们要处理的是分类问题的特征筛选,我们用到的是iris数据集

iris_data = load_iris()
x = iris_data.data
y = iris_data.target
 
print("数据集的行与列的数量: ", x.shape) 

output

数据集的行与列的数量:  (150, 4)

对于分类问题,我们采用的评估指标是卡方,假设我们要挑选出3个对于模型最佳性能而言的特征变量,因此我们将K设置成3

select = SelectKBest(score_func=chi2, k=3)
# 拟合数据
z = select.fit_transform(x,y)
filter_1 = select.get_support()
features = array(iris.feature_names)
print("所有的特征: ", features)
print("筛选出来最优的特征是: ", features[filter_1])

output

所有的特征:  ['sepal length (cm)' 'sepal width (cm)' 'petal length (cm)'
 'petal width (cm)']
筛选出来最优的特征是:  ['sepal length (cm)' 'petal length (cm)' 'petal width (cm)']

那么对于回归的问题而言,我们可以选择上面波士顿房价的例子,同理我们想要筛选出对于模型最佳的性能而言的7个特征变量,同时对于回归问题的评估指标用的是f_regression

boston_data = load_boston()
x = boston_data.data
y = boston_data.target

然后我们将拟合数据,并且进行特征变量的筛选

select_regression = SelectKBest(score_func=f_regression, k=7)
z = select_regression.fit_transform(x, y)

filter_2 = select_regression.get_support()
features_regression = array(boston_data.feature_names)
 
print("所有的特征变量有:")
print(features_regression)
 
print("筛选出来的7个特征变量则是:")
print(features_regression[filter_2])

output

所有的特征变量有:
['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'
 'B' 'LSTAT']
筛选出来的7个特征变量则是:
['CRIM' 'INDUS' 'NOX' 'RM' 'TAX' 'PTRATIO' 'LSTAT']

相关推荐

如何用 coco 数据集训练 Detectron2 模型?

随着最新的Pythorc1.3版本的发布,下一代完全重写了它以前的目标检测框架,新的目标检测框架被称为Detectron2。本教程将通过使用自定义coco数据集训练实例分割模型,帮助你开始使...

CICD联动阿里云容器服务Kubernetes实践之Bamboo篇

本文档以构建一个Java软件项目并部署到阿里云容器服务的Kubernetes集群为例说明如何使用Bamboo在阿里云Kubernetes服务上运行RemoteAgents并在agents上...

Open3D-ML点云语义分割实验【RandLA-Net】

作为点云Open3D-ML实验的一部分,我撰写了文章解释如何使用Tensorflow和PyTorch支持安装此库。为了测试安装,我解释了如何运行一个简单的Python脚本来可视化名为...

清理系统不用第三方工具(系统自带清理软件效果好不?)

清理优化系统一定要借助于优化工具吗?其实,手动优化系统也没有那么神秘,掌握了方法和技巧,系统清理也是一件简单和随心的事。一方面要为每一个可能产生累赘的文件找到清理的方法,另一方面要寻找能够提高工作效率...

【信创】联想开先终端开机不显示grub界面的修改方法

原文链接:【信创】联想开先终端开机不显示grub界面的修改方法...

如意玲珑成熟度再提升,三大发行版支持教程来啦!

前期,我们已分别发布如意玲珑在deepinV23与UOSV20、openEuler24.03发行版的操作指南,本文,我们将为大家详细介绍Ubuntu24.04、Debian12、op...

118种常见的多媒体文件格式(英文简写)

MP4[?mpi?f??]-MPEG-4Part14(MPEG-4第14部分)AVI[e?vi??a?]-AudioVideoInterleave(音视频交错)MOV[m...

密码丢了急上火?码住7种console密码紧急恢复方式!

身为攻城狮的你,...

CSGO丨CS2的cfg指令代码分享(csgo自己的cfg在哪里?config文件位置在哪?)

?...

使用open SSL生成局域网IP地址证书

某些特殊情况下,用户内网访问多可文档管理系统时需要启用SSL传输加密功能,但只有IP,没有域名和证书。这种情况下多可提供了一种免费可行的方式,通过openSSL生成免费证书。此方法生成证书浏览器会提示...

Python中加载配置文件(python怎么加载程序包)

我们在做开发的时候经常要使用配置文件,那么配置文件的加载就需要我们提前考虑,再不使用任何框架的情况下,我们通常会有两种解决办法:完整加载将所有配置信息一次性写入单一配置文件.部分加载将常用配置信息写...

python开发项目,不得不了解的.cfg配置文件

安装软件时,经常会见到后缀为.cfg、.ini的文件,一般我们不用管,只要不删就行。因为这些是程序安装、运行时需要用到的配置文件。但对开发者来说,这种文件是怎么回事就必须搞清了。本文从.cfg文件的创...

瑞芯微RK3568鸿蒙开发板OpenHarmony系统修改cfg文件权限方法

本文适用OpenHarmony开源鸿蒙系统,本次使用的是开源鸿蒙主板,搭载瑞芯微RK3568芯片。深圳触觉智能专注研发生产OpenHarmony开源鸿蒙硬件,包括核心板、开发板、嵌入式主板,工控整机等...

Python9:图像风格迁移-使用阿里的接口

先不多说,直接上结果图。#!/usr/bin/envpython#coding=utf-8importosfromaliyunsdkcore.clientimportAcsClient...

Python带你打造个性化的图片文字识别

我们的目标:从CSV文件读取用户的文件信息,并将文件名称修改为姓名格式的中文名称,进行规范资料整理,从而实现快速对多个文件进行重命名。最终效果:将原来无规律的文件名重命名为以姓名为名称的文件。技术点:...

取消回复欢迎 发表评论:

请填写验证码