百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程字典 > 正文

使用Scikit-Learn的HalvingGridSearchCV进行更快的超参数调优

toyiye 2024-07-08 23:06 11 浏览 0 评论


比较Halving Grid Search 和Exhaustive GridSearchCV

如果你是Scikit-Learn的粉丝,那么0.24.0版本你一定会喜欢。里面新特性包括model_selection模块中的两个实验性超参数优化器类:HalvingGridSearchCV和HalvingRandomSearchCV。

和它们的近亲GridSearchCV和RandomizedSearchCV一样,它们使用交叉验证来寻找最佳超参数。然而,他们的连续二分搜索策略并不是独立搜索超参数集候选项,而是“开始用少量资源评估所有候选项,并使用越来越多的资源迭代地选择最佳候选项。”默认资源是样本的数量,但用户可以将其设置为任何正整数模型参数,如梯度增强轮。因此,减半方法具有在更短的时间内找到好的超参数的潜力。

我通读了Scikit-Learn的“Comparison between grid search and successive halving”示例并进行了测试,但是由于总共花费了11秒的时间,因此我仍然不清楚使用减半与穷举方法对实际操作的影响。 因此,我决定建立一个实验来回答以下问题:

  1. HalvingGridSearchCV与GridSearchCV相比要快多少?
  2. HalvingGridSearchCV是否仍选择与GridSearchCV相同的超参数集?

我将运行并比较3个搜索:

  • GridSearchCV
  • 使用默认的“ n_samples”资源进行HalvingGridSearchCV
  • 使用CatBoost的“ n_estimators”作为资源的HalvingGridSearchCV

升级Scikit-Learn

第一步是将Scikit的版本升级到0.24.0,并确保可以导入正确的版本。

# !! pip install scikit-learn --upgrade
import sklearn
print(sklearn.__version__)
0.24.0

加载数据集

我使用Kaggle的爱荷华州艾姆斯房价数据集进行了测试。 它具有1,460个观测值和79个特征。 因变量是房屋的SalePrice。

import numpy as np 
import pandas as pd 
DEP_VAR = 'SalePrice'
train_df = pd.read_csv('../kaggle/input/house-prices-advanced-regression-techniques/train.csv')\
.set_index('Id')

y_train = train_df.pop(DEP_VAR)

创建处理管道和模型

我还编写了一个名为pipeline_ames.py的脚本。 它实例化包含某些功能转换和CatBoostRegressor的管道。 我在下面绘制了它的视觉表示。

from sklearn import set_config 
from sklearn.utils import estimator_html_repr 
from IPython.core.display import display, HTML 
from pipeline_ames import pipe
set_config(display='diagram')
display(HTML(estimator_html_repr(pipe)))

实验测试

grid_search_paramsdictionary包含在3个搜索中使用的控制参数。 我对param_grid进行了3倍交叉验证,该验证包含4个CatBoost超参数,每个参数具有3个值。 结果以均方根对数误差(RMSLE)进行测量。

from sklearn.metrics import mean_squared_log_error, make_scorer
np.random.seed(123) # set a global seed
pd.set_option("display.precision", 4)
rmsle = lambda y_true, y_pred:\ 
np.sqrt(mean_squared_log_error(y_true, y_pred))
scorer = make_scorer(rmsle, greater_is_better=False)
param_grid = {"model__max_depth": [5, 6, 7],
'model__learning_rate': [.01, 0.03, .06],
'model__subsample': [.7, .8, .9],
'model__colsample_bylevel': [.8, .9, 1]}
grid_search_params = dict(estimator=pipe,
param_grid=param_grid,
scoring=scorer,
cv=3,
n_jobs=-1,
verbose=2)

GridSearchCV

基线详尽的网格搜索花费了将近33分钟才能对我们的81位候选人进行3倍交叉验证。 我们将看看HalvingGridSearchCV进程是否可以在更短的时间内找到相同的超参数。

%%time
from sklearn.model_selection import GridSearchCV
full_results = GridSearchCV(**grid_search_params)\
.fit(train_df, y_train)
pd.DataFrame(full_results.best_params_, index=[0])\
.assign(RMSLE=-full_results.best_score_)
Fitting 3 folds for each of 81 candidates, totalling 243 fits
Wall time: 32min 53s

使用n_samples的HalvingGridSearchCV

在第一个减半网格搜索中,我对资源使用了默认的“ n_samples”,并将min_resources设置为使用总资源的1/4,即365个样本。我没有使用默认的min_resources计算22个样本,因为它产生了可怕的结果。

对于两个减半的搜索,我使用Factor=2。此参数确定在连续迭代中使用的n_candidates和n_resources,并间接确定在搜索中利用的迭代总数。

该Factor的倒数决定了保留的n个候选对象的比例-在这种情况下为一半。所有其他候选人都将被丢弃。因此,正如您在下面的日志中看到的那样,我的搜索中的3次迭代有81、41和21个候选对象。

Factor与上一次迭代的n_resources的乘积确定n_resources。我的3次迭代搜索使用了365、730和1460个样本。

迭代的总数由n_resources可以增加多少倍而又不超过max_resources来确定。如果希望最终迭代使用所有资源,则需要将min_resources和Factor设置为max_resources的因数。

%%time
from sklearn.experimental import enable_halving_search_cv 
from sklearn.model_selection import HalvingGridSearchCV
FACTOR = 2
MAX_RESOURCE_DIVISOR = 4
n_samples = len(train_df)
halving_results_n_samples =\
HalvingGridSearchCV(resource='n_samples',
min_resources=n_samples//\
MAX_RESOURCE_DIVISOR,
factor=FACTOR,
**grid_search_params
)\
.fit(train_df, y_train)

n_iterations: 3
n_required_iterations: 7
n_possible_iterations: 3
min_resources_: 365
max_resources_: 1460
aggressive_elimination: False
factor: 2
----------
iter: 0
n_candidates: 81
n_resources: 365
Fitting 3 folds for each of 81 candidates, totalling 243 fits
----------
iter: 1
n_candidates: 41
n_resources: 730
Fitting 3 folds for each of 41 candidates, totalling 123 fits
----------
iter: 2
n_candidates: 21
n_resources: 1460
Fitting 3 folds for each of 21 candidates, totalling 63 fits
Wall time: 34min 46s

此首次减半搜索未产生良好结果。 实际上,它比详尽的搜索花费了更长的时间。 使用我的compare_cv_best_params函数,我们看到它仅找到第九个最佳超参数集。

from compare_functions import *
compare_cv_best_params(full_results, *[halving_results_n_samples])\
.style.applymap(lambda cell: ‘background: pink’ if cell == 9 else)

使用n_estimators的HalvingGridSearchCV

在第二个减半搜索中,我使用CatBoost的n_estimators作为资源,并设置了第一次迭代的min_resources以使用其中的四分之一,同时将Factor设置为2。

%%time
halving_results_n_estimators =\
HalvingGridSearchCV(resource='model__n_estimators', 
max_resources=1000,
min_resources=1000 // MAX_RESOURCE_DIVISOR,
factor=FACTOR,
**grid_search_params
)\
.fit(train_df, y_train)
n_iterations: 3
n_required_iterations: 7
n_possible_iterations: 3
min_resources_: 250
max_resources_: 1000
aggressive_elimination: False
factor: 2
----------
iter: 0
n_candidates: 81
n_resources: 250
Fitting 3 folds for each of 81 candidates, totalling 243 fits
----------
iter: 1
n_candidates: 41
n_resources: 500
Fitting 3 folds for each of 41 candidates, totalling 123 fits
----------
iter: 2
n_candidates: 21
n_resources: 1000
Fitting 3 folds for each of 21 candidates, totalling 63 fits
Wall time: 22min 59s

这种减半的搜索产生了我们希望看到的结果。 它是在10分钟前完成的,因此比详尽的网格搜索快30%。 重要的是,它还找到了最佳的超参数集。

compare_cv_best_params(full_results, *[halving_results_n_samples, 
halving_results_n_estimators])\
.style.apply(lambda row: \
row.apply(lambda col: \
'background: lightgreen' if row.name == 2 else ''), \
axis=1)

总结

我的HalvingGridSearchCV实验的结果好坏参半。 使用默认的“ n_samples”资源会产生缓慢且次优的结果。 如果您不使用大量样本,限制样本可能不会节省您的任何时间。

但是,使用CatBoost的n_estimators作为资源可以在更短的时间内产生最佳结果。 这以我自己的经验进行跟踪,手动调整了梯度提升超参数。 通常,我可以从验证日志中很快看出,是否值得在更多回合中增加超参数集。

作者:Kyle Gilde

deephub翻译组

相关推荐

为何越来越多的编程语言使用JSON(为什么编程)

JSON是JavascriptObjectNotation的缩写,意思是Javascript对象表示法,是一种易于人类阅读和对编程友好的文本数据传递方法,是JavaScript语言规范定义的一个子...

何时在数据库中使用 JSON(数据库用json格式存储)

在本文中,您将了解何时应考虑将JSON数据类型添加到表中以及何时应避免使用它们。每天?分享?最新?软件?开发?,Devops,敏捷?,测试?以及?项目?管理?最新?,最热门?的?文章?,每天?花?...

MySQL 从零开始:05 数据类型(mysql数据类型有哪些,并举例)

前面的讲解中已经接触到了表的创建,表的创建是对字段的声明,比如:上述语句声明了字段的名称、类型、所占空间、默认值和是否可以为空等信息。其中的int、varchar、char和decimal都...

JSON对象花样进阶(json格式对象)

一、引言在现代Web开发中,JSON(JavaScriptObjectNotation)已经成为数据交换的标准格式。无论是从前端向后端发送数据,还是从后端接收数据,JSON都是不可或缺的一部分。...

深入理解 JSON 和 Form-data(json和formdata提交区别)

在讨论现代网络开发与API设计的语境下,理解客户端和服务器间如何有效且可靠地交换数据变得尤为关键。这里,特别值得关注的是两种主流数据格式:...

JSON 语法(json 语法 priority)

JSON语法是JavaScript语法的子集。JSON语法规则JSON语法是JavaScript对象表示法语法的子集。数据在名称/值对中数据由逗号分隔花括号保存对象方括号保存数组JS...

JSON语法详解(json的语法规则)

JSON语法规则JSON语法是JavaScript对象表示法语法的子集。数据在名称/值对中数据由逗号分隔大括号保存对象中括号保存数组注意:json的key是字符串,且必须是双引号,不能是单引号...

MySQL JSON数据类型操作(mysql的json)

概述mysql自5.7.8版本开始,就支持了json结构的数据存储和查询,这表明了mysql也在不断的学习和增加nosql数据库的有点。但mysql毕竟是关系型数据库,在处理json这种非结构化的数据...

JSON的数据模式(json数据格式示例)

像XML模式一样,JSON数据格式也有Schema,这是一个基于JSON格式的规范。JSON模式也以JSON格式编写。它用于验证JSON数据。JSON模式示例以下代码显示了基本的JSON模式。{"...

前端学习——JSON格式详解(后端json格式)

JSON(JavaScriptObjectNotation)是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。它基于JavaScriptProgrammingLa...

什么是 JSON:详解 JSON 及其优势(什么叫json)

现在程序员还有谁不知道JSON吗?无论对于前端还是后端,JSON都是一种常见的数据格式。那么JSON到底是什么呢?JSON的定义...

PostgreSQL JSON 类型:处理结构化数据

PostgreSQL提供JSON类型,以存储结构化数据。JSON是一种开放的数据格式,可用于存储各种类型的值。什么是JSON类型?JSON类型表示JSON(JavaScriptO...

JavaScript:JSON、三种包装类(javascript 包)

JOSN:我们希望可以将一个对象在不同的语言中进行传递,以达到通信的目的,最佳方式就是将一个对象转换为字符串的形式JSON(JavaScriptObjectNotation)-JS的对象表示法...

Python数据分析 只要1分钟 教你玩转JSON 全程干货

Json简介:Json,全名JavaScriptObjectNotation,JSON(JavaScriptObjectNotation(记号、标记))是一种轻量级的数据交换格式。它基于J...

比较一下JSON与XML两种数据格式?(json和xml哪个好)

JSON(JavaScriptObjectNotation)和XML(eXtensibleMarkupLanguage)是在日常开发中比较常用的两种数据格式,它们主要的作用就是用来进行数据的传...

取消回复欢迎 发表评论:

请填写验证码