百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程字典 > 正文

Python数学建模系列(五):微分方程

toyiye 2024-08-22 02:25 4 浏览 0 评论

菜鸟学习记:第四十四天

收拾行李 准备出发!

备注

若下文中数学公式显示不正常,可以查看Python数学建模系列(五):微分方程

1、微分方程分类

微分方程是用来描述某一类函数与其导数之间关系的方程,其解是一个符合方程的函数。

微分方程按自变量个数可分为常微分方程和偏微分方程

常微分方程(ODE:ordinary differential equation)

偏微分方程(两个以上的自变量)


2、微分方程解析解

具备解析解的ODE(常微分方程),我们可以利用SymPy库进行求解

以求解阻尼谐振子的二阶ODE为例,其表达式为:


Demo代码

import sympy
 
 
def apply_ics(sol, ics, x, known_params):
    free_params = sol.free_symbols - set(known_params)
    eqs = [(sol.lhs.diff(x, n) - sol.rhs.diff(x, n)).subs(x, 0).subs(ics) for n in range(len(ics))]
    sol_params = sympy.solve(eqs, free_params)
    return sol.subs(sol_params)
 
 
# 初始化打印环境
sympy.init_printing()
# 标记参数,且均为正
t, omega0, gamma = sympy.symbols("t, omega_0, gamma", positive=True)
# 标记x是微分函数,非变量
x = sympy.Function("x")
# 用diff()和dsolve得到通解 
# ode 微分方程等号左边的部分,等号右边为0
ode = x(t).diff(t, 2) + 2 * gamma * omega0 * x(t).diff(t) + omega0 ** 2 * x(t)
ode_sol = sympy.dsolve(ode)
# 初始条件:字典匹配
ics = {x(0): 1, x(t).diff(t).subs(t, 0): 0}
x_t_sol = apply_ics(ode_sol, ics, t, [omega0, gamma])
sympy.pprint(x_t_sol)

运行结果:

image.png

image.png

3、微分方程数值解

当ODE无法求得解析解时,可以用scipy中的integrate.odeint求 数值解来探索其解的部分性质,并辅以可视化,能直观地展现 ODE解的函数表达。

以如下一阶非线性(因为函数y幂次为2)ODE为例:

image.png

现用odeint求其数值解

3.1 场线图与数值解

Demo代码

import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
import sympy

def plot_direction_field(x, y_x, f_xy, x_lim=(-5, 5), y_lim=(-5, 5), ax=None):
    f_np = sympy.lambdify((x, y_x), f_xy, 'numpy')
    x_vec = np.linspace(x_lim[0], x_lim[1], 20)
    y_vec = np.linspace(y_lim[0], y_lim[1], 20)

    if ax is None:
        _, ax = plt.subplots(figsize=(4, 4))

    dx = x_vec[1] - x_vec[0]
    dy = y_vec[1] - y_vec[0]

    for m, xx in enumerate(x_vec):
        for n, yy in enumerate(y_vec):
            Dy = f_np(xx, yy) * dx
            Dx = 0.8 * dx**2 / np.sqrt(dx**2 + Dy**2)
            Dy = 0.8 * Dy*dy / np.sqrt(dx**2 + Dy**2)
            ax.plot([xx - Dx/2, xx + Dx/2], [yy - Dy/2, yy + Dy/2], 'b', lw=0.5)

    ax.axis('tight')
    ax.set_title(r"$%s#34; %(sympy.latex(sympy.Eq(y_x.diff(x), f_xy))), fontsize=18)

    return ax

x = sympy.symbols('x')
y = sympy.Function('y')
f = x-y(x)**2

f_np = sympy.lambdify((y(x), x), f)
## put variables (y(x), x) into lambda function f.
y0 = 1
xp = np.linspace(0, 5, 100)
yp = integrate.odeint(f_np, y0, xp)
## solve f_np with initial conditons y0, and x ranges as xp.
xn = np.linspace(0, -5, 100)
yn = integrate.odeint(f_np, y0, xn)

fig, ax = plt.subplots(1, 1, figsize=(4, 4))
plot_direction_field(x, y(x), f, ax=ax)
## plot direction field of function f
ax.plot(xn, yn, 'b', lw=2)
ax.plot(xp, yp, 'r', lw=2)
plt.show()

运行结果:

image.png

3.2 洛伦兹曲线与数值解

以求解洛伦兹曲线为例,以下方程组代表曲线在xyz三个方向 上的速度,给定一个初始点,可以画出相应的洛伦兹曲线:

在这里插入图片描述

Demo代码

import numpy as np
from scipy.integrate import odeint
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
 
 
def dmove(Point, t, sets):
    p, r, b = sets
    x, y, z = Point
    return np.array([p * (y - x), x * (r - z), x * y - b * z])
 
 
t = np.arange(0, 30, 0.001)
P1 = odeint(dmove, (0., 1., 0.), t, args=([10., 28., 3.],))
P2 = odeint(dmove, (0., 1.01, 0.), t, args=([10., 28., 3.],))
fig = plt.figure()
ax = Axes3D(fig)
ax.plot(P1[:, 0], P1[:, 1], P1[:, 2])
ax.plot(P2[:, 0], P2[:, 1], P2[:, 2])
plt.show()

运行结果:

image.png

4、传染病模型

在这里插入图片描述

模型一:SI-Model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt

# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150

# INI为初始状态下的数组
INI = (S_0,I_0)


def funcSI(inivalue,_):
Y = np.zeros(2)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N + gamma * X[1]
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
return Y

T_range = np.arange(0,T + 1)

RES = spi.odeint(funcSI,INI,T_range)


plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.title('SI Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

image.png

模型二:SIS model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt

# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150

# INI为初始状态下的数组
INI = (S_0,I_0)


def funcSIS(inivalue,_):
Y = np.zeros(2)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0]) / N * X[1] + gamma * X[1]
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
return Y

T_range = np.arange(0,T + 1)

RES = spi.odeint(funcSIS,INI,T_range)

plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.title('SIS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

image.png

模型三:SIR model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt

# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150

# INI为初始状态下的数组
INI = (S_0,I_0,R_0)


def funcSIR(inivalue,_):
Y = np.zeros(3)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
# 治愈个体变化
Y[2] = gamma * X[1]
return Y

T_range = np.arange(0,T + 1)

RES = spi.odeint(funcSIR,INI,T_range)


plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,2],color = 'green',label = 'Recovery',marker = '.')
plt.title('SIR Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()
image.png

模型四:SIRS-Model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt

# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# Ts为抗体持续时间
Ts = 7
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150

# INI为初始状态下的数组
INI = (S_0,I_0,R_0)


def funcSIRS(inivalue,_):
Y = np.zeros(3)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N + X[2] / Ts
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
# 治愈个体变化
Y[2] = gamma * X[1] - X[2] / Ts
return Y

T_range = np.arange(0,T + 1)

RES = spi.odeint(funcSIRS,INI,T_range)


plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,2],color = 'green',label = 'Recovery',marker = '.')
plt.title('SIRS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

image.png

模型五:SEIR-Model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt

# N为人群总数
N = 10000
# β为传染率系数
beta = 0.6
# gamma为恢复率系数
gamma = 0.1
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150

# INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0)


def funcSEIR(inivalue,_):
Y = np.zeros(4)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[2]) / N
# 潜伏个体变化
Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te
# 感染个体变化
Y[2] = X[1] / Te - gamma * X[2]
# 治愈个体变化
Y[3] = gamma * X[2]
return Y

T_range = np.arange(0,T + 1)

RES = spi.odeint(funcSEIR,INI,T_range)


plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'orange',label = 'Exposed',marker = '.')
plt.plot(RES[:,2],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,3],color = 'green',label = 'Recovery',marker = '.')

plt.title('SEIR Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

image.png

模型六:SEIRS-Model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt

# N为人群总数
N = 10000
# β为传染率系数
beta = 0.6
# gamma为恢复率系数
gamma = 0.1
# Ts为抗体持续时间
Ts = 7
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150

# INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0)


def funcSEIRS(inivalue,_):
Y = np.zeros(4)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[2]) / N + X[3] / Ts
# 潜伏个体变化
Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te
# 感染个体变化
Y[2] = X[1] / Te - gamma * X[2]
# 治愈个体变化
Y[3] = gamma * X[2] - X[3] / Ts
return Y

T_range = np.arange(0,T + 1)

RES = spi.odeint(funcSEIRS,INI,T_range)


plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'orange',label = 'Exposed',marker = '.')
plt.plot(RES[:,2],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,3],color = 'green',label = 'Recovery',marker = '.')

plt.title('SEIRS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

image.png

结语

参考:

  • https://www.bilibili.com/video/BV12h411d7Dm
  • https://zhuanlan.zhihu.com/p/104091330

学习来源:

  • B站及其课堂PPT
  • 对其中代码进行了复现

「文章仅作为学习笔记,记录从0到1的一个过程」

希望对您有所帮助,如有错误欢迎小伙伴指正~

相关推荐

# Python 3 # Python 3字典Dictionary(1)

Python3字典字典是另一种可变容器模型,且可存储任意类型对象。字典的每个键值(key=>value)对用冒号(:)分割,每个对之间用逗号(,)分割,整个字典包括在花括号({})中,格式如...

Python第八课:数据类型中的字典及其函数与方法

Python3字典字典是另一种可变容器模型,且可存储任意类型对象。字典的每个键值...

Python中字典详解(python 中字典)

字典是Python中使用键进行索引的重要数据结构。它们是无序的项序列(键值对),这意味着顺序不被保留。键是不可变的。与列表一样,字典的值可以保存异构数据,即整数、浮点、字符串、NaN、布尔值、列表、数...

Python3.9又更新了:dict内置新功能,正式版十月见面

机器之心报道参与:一鸣、JaminPython3.8的热乎劲还没过去,Python就又双叒叕要更新了。近日,3.9版本的第四个alpha版已经开源。从文档中,我们可以看到官方透露的对dic...

Python3 基本数据类型详解(python三种基本数据类型)

文章来源:加米谷大数据Python中的变量不需要声明。每个变量在使用前都必须赋值,变量赋值以后该变量才会被创建。在Python中,变量就是变量,它没有类型,我们所说的"类型"是变...

一文掌握Python的字典(python字典用法大全)

字典是Python中最强大、最灵活的内置数据结构之一。它们允许存储键值对,从而实现高效的数据检索、操作和组织。本文深入探讨了字典,涵盖了它们的创建、操作和高级用法,以帮助中级Python开发...

超级完整|Python字典详解(python字典的方法或操作)

一、字典概述01字典的格式Python字典是一种可变容器模型,且可存储任意类型对象,如字符串、数字、元组等其他容器模型。字典的每个键值key=>value对用冒号:分割,每个对之间用逗号,...

Python3.9版本新特性:字典合并操作的详细解读

处于测试阶段的Python3.9版本中有一个新特性:我们在使用Python字典时,将能够编写出更可读、更紧凑的代码啦!Python版本你现在使用哪种版本的Python?3.7分?3.5分?还是2.7...

python 自学,字典3(一些例子)(python字典有哪些基本操作)

例子11;如何批量复制字典里的内容2;如何批量修改字典的内容3;如何批量修改字典里某些指定的内容...

Python3.9中的字典合并和更新,几乎影响了所有Python程序员

全文共2837字,预计学习时长9分钟Python3.9正在积极开发,并计划于今年10月发布。2月26日,开发团队发布了alpha4版本。该版本引入了新的合并(|)和更新(|=)运算符,这个新特性几乎...

Python3大字典:《Python3自学速查手册.pdf》限时下载中

最近有人会想了,2022了,想学Python晚不晚,学习python有前途吗?IT行业行业薪资高,发展前景好,是很多求职群里严重的香饽饽,而要进入这个高薪行业,也不是那么轻而易举的,拿信工专业的大学生...

python学习——字典(python字典基本操作)

字典Python的字典数据类型是基于hash散列算法实现的,采用键值对(key:value)的形式,根据key的值计算value的地址,具有非常快的查取和插入速度。但它是无序的,包含的元素个数不限,值...

324页清华教授撰写【Python 3 菜鸟查询手册】火了,小白入门字典

如何入门学习python...

Python3.9中的字典合并和更新,了解一下

全文共2837字,预计学习时长9分钟Python3.9正在积极开发,并计划于今年10月发布。2月26日,开发团队发布了alpha4版本。该版本引入了新的合并(|)和更新(|=)运算符,这个新特性几乎...

python3基础之字典(python中字典的基本操作)

字典和列表一样,也是python内置的一种数据结构。字典的结构如下图:列表用中括号[]把元素包起来,而字典是用大括号{}把元素包起来,只不过字典的每一个元素都包含键和值两部分。键和值是一一对应的...

取消回复欢迎 发表评论:

请填写验证码