百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程字典 > 正文

JS异步编程 | Async / Await / Generator 实现原理解析

toyiye 2024-09-01 05:35 3 浏览 0 评论

async/await实现

在多个回调依赖的场景中,尽管Promise通过链式调用取代了回调嵌套,但过多的链式调用可读性仍然不佳,流程控制也不方便,ES7 提出的async 函数,终于让 JS 对于异步操作有了终极解决方案,简洁优美地解决了以上两个问题。

设想一个这样的场景,异步任务a->b->c之间存在依赖关系,如果我们通过then链式调用来处理这些关系,可读性并不是很好。

如果我们想控制其中某个过程,比如在某些条件下,b不往下执行到c,那么也不是很方便控制。

Promise.resolve(a)
  .then(b => {
    // do something
  })
  .then(c => {
    // do something
  })

但是如果通过async/await来实现这个场景,可读性和流程控制都会方便不少。

async () => {
  const a = await Promise.resolve(a);
  const b = await Promise.resolve(b);
  const c = await Promise.resolve(c);
}

那么我们要如何实现一个async/await呢,首先我们要知道,async/await实际上是对Generator(生成器)的封装,是一个语法糖。

由于Generator出现不久就被async/await取代了,很多同学对Generator比较陌生,因此我们先来看看Generator的用法:

ES6 新引入了 Generator 函数,可以通过 yield 关键字,把函数的执行流挂起,通过next()方法可以切换到下一个状态,为改变执行流程提供了可能,从而为异步编程提供解决方案。

function* myGenerator() {
  yield '1'
  yield '2'
  return '3'
}

const gen = myGenerator();  // 获取迭代器
gen.next()  //{value: "1", done: false}
gen.next()  //{value: "2", done: false}
gen.next()  //{value: "3", done: true}

也可以通过给next()传参, 让yield具有返回值

function* myGenerator() {
  console.log(yield '1')  //test1
  console.log(yield '2')  //test2
  console.log(yield '3')  //test3
}

// 获取迭代器
const gen = myGenerator();

gen.next()
gen.next('test1')
gen.next('test2')
gen.next('test3')

我们看到Generator的用法,应该?会感到很熟悉,*/yield和async/await看起来其实已经很相似了,它们都提供了暂停执行的功能,但二者又有三点不同:

  • async/await自带执行器,不需要手动调用next()就能自动执行下一步
  • async函数返回值是Promise对象,而Generator返回的是生成器对象
  • await能够返回Promise的resolve/reject的值

我们对async/await的实现,其实也就是对应以上三点封装Generator。


自动执行

我们先来看一下,对于这样一个Generator,手动执行是怎样一个流程。

function* myGenerator() {
  yield Promise.resolve(1);
  yield Promise.resolve(2);
  yield Promise.resolve(3);
}

// 手动执行迭代器
const gen = myGenerator()
gen.next().value.then(val => {
  console.log(val)
  gen.next().value.then(val => {
    console.log(val)
    gen.next().value.then(val => {
      console.log(val)
    })
  })
})

//输出1 2 3

我们也可以通过给gen.next()传值的方式,让yield能返回resolve的值。

function* myGenerator() {
  console.log(yield Promise.resolve(1))   //1
  console.log(yield Promise.resolve(2))   //2
  console.log(yield Promise.resolve(3))   //3
}

// 手动执行迭代器
const gen = myGenerator()
gen.next().value.then(val => {
  // console.log(val)
  gen.next(val).value.then(val => {
    // console.log(val)
    gen.next(val).value.then(val => {
      // console.log(val)
      gen.next(val)
    })
  })
})

显然,手动执行的写法看起来既笨拙又丑陋,我们希望生成器函数能自动往下执行,且yield能返回resolve的值。

基于这两个需求,我们进行一个基本的封装,这里async/await是关键字,不能重写,我们用函数来模拟:

function run(gen) {
  var g = gen()                     //由于每次gen()获取到的都是最新的迭代器,因此获取迭代器操作要放在_next()之前,否则会进入死循环

  function _next(val) {             //封装一个方法, 递归执行g.next()
    var res = g.next(val)           //获取迭代器对象,并返回resolve的值
    if(res.done) return res.value   //递归终止条件
    res.value.then(val => {         //Promise的then方法是实现自动迭代的前提
      _next(val)                    //等待Promise完成就自动执行下一个next,并传入resolve的值
    })
  }
  _next()  //第一次执行
}

对于我们之前的例子,我们就能这样执行:

function* myGenerator() {
  console.log(yield Promise.resolve(1))   //1
  console.log(yield Promise.resolve(2))   //2
  console.log(yield Promise.resolve(3))   //3
}

run(myGenerator)

这样我们就初步实现了一个async/await。

上边的代码只有五六行,但并不是一下就能看明白的,我们之前用了四个例子来做铺垫,也是为了让读者更好地理解这段代码。

简单来说,我们封装了一个run方法,run方法里我们把执行下一步的操作封装成_next(),每次Promise.then()的时候都去执行_next(),实现自动迭代的效果。

在迭代的过程中,我们还把resolve的值传入gen.next(),使得yield得以返回Promise的resolve的值

这里插一句,是不是只有.then方法这样的形式才能完成我们自动执行的功能呢?答案是否定的,yield后边除了接Promise,还可以接thunk函数,thunk函数不是一个新东西,所谓thunk函数,就是单参的只接受回调的函数。

无论是Promise还是thunk函数,其核心都是通过传入回调的方式来实现Generator的自动执行。thunk函数只作为一个拓展知识,理解有困难的同学也可以跳过这里,并不影响后续理解。


返回Promise & 异常处理


虽然我们实现了Generator的自动执行以及让yield返回resolve的值,但上边的代码还存在着几点问题:

  • 需要兼容基本类型:这段代码能自动执行的前提是yield后面跟Promise,为了兼容后面跟着基本类型值的情况,我们需要把yield跟的内容(gen().next.value)都用Promise.resolve()转化一遍
  • 缺少错误处理:上边代码里的Promise如果执行失败,就会导致后续执行直接中断,我们需要通过调用Generator.prototype.throw(),把错误抛出来,才能被外层的try-catch捕获到
  • 返回值是Promise:async/await的返回值是一个Promise,我们这里也需要保持一致,给返回值包一个Promise

我们改造一下run方法:

function run(gen) {
  //把返回值包装成promise
  return new Promise((resolve, reject) => {
    var g = gen()

    function _next(val) {
      //错误处理
      try {
        var res = g.next(val) 
      } catch(err) {
        return reject(err); 
      }
      if(res.done) {
        return resolve(res.value);
      }
      //res.value包装为promise,以兼容yield后面跟基本类型的情况
      Promise.resolve(res.value).then(
        val => {
          _next(val);
        }, 
        err => {
          //抛出错误
          g.throw(err)
        });
    }
    _next();
  });
}

然后我们可以测试一下:

function* myGenerator() {
  try {
    console.log(yield Promise.resolve(1)) 
    console.log(yield 2)   //2
    console.log(yield Promise.reject('error'))
  } catch (error) {
    console.log(error)
  }
}

const result = run(myGenerator)     //result是一个Promise
//输出 1 2 error

到这里,一个async/await的实现基本完成了。最后我们可以看一下babel对async/await的转换结果,其实整体的思路是一样的,但是写法稍有不同:

//相当于我们的run()
function _asyncToGenerator(fn) {
  // return一个function,和async保持一致。我们的run直接执行了Generator,其实是不太规范的
  return function() {
    var self = this
    var args = arguments
    return new Promise(function(resolve, reject) {
      var gen = fn.apply(self, args);

      //相当于我们的_next()
      function _next(value) {
        asyncGeneratorStep(gen, resolve, reject, _next, _throw, 'next', value);
      }
      //处理异常
      function _throw(err) {
        asyncGeneratorStep(gen, resolve, reject, _next, _throw, 'throw', err);
      }
      _next(undefined);
    });
  };
}

function asyncGeneratorStep(gen, resolve, reject, _next, _throw, key, arg) {
  try {
    var info = gen[key](arg);
    var value = info.value;
  } catch (error) {
    reject(error);
    return;
  }
  if (info.done) {
    resolve(value);
  } else {
    Promise.resolve(value).then(_next, _throw);
  }
}

使用方式:

const foo = _asyncToGenerator(function* () {
  try {
    console.log(yield Promise.resolve(1))   //1
    console.log(yield 2)                    //2
    return '3'
  } catch (error) {
    console.log(error)
  }
})

foo().then(res => {
  console.log(res)                          //3
})

有关async/await的实现,到这里就告一段落了。但是直到结尾,我们也不知道await到底是如何暂停执行的,有关await暂停执行的秘密,我们还要到Generator的实现中去寻找答案。

Generator实现

我们从一个简单的Generator使用实例开始,一步步探究Generator的实现原理:

function* foo() {
  yield 'result1'
  yield 'result2'
  yield 'result3'
}
  
const gen = foo()
console.log(gen.next().value)
console.log(gen.next().value)
console.log(gen.next().value)

我们可以在babel官网上在线转化这段代码,看看ES5环境下是如何实现Generator的:

"use strict";

var _marked =
/*#__PURE__*/
regeneratorRuntime.mark(foo);

function foo() {
  return regeneratorRuntime.wrap(function foo$(_context) {
    while (1) {
      switch (_context.prev = _context.next) {
        case 0:
          _context.next = 2;
          return 'result1';

        case 2:
          _context.next = 4;
          return 'result2';

        case 4:
          _context.next = 6;
          return 'result3';

        case 6:
        case "end":
          return _context.stop();
      }
    }
  }, _marked);
}

var gen = foo();
console.log(gen.next().value);
console.log(gen.next().value);
console.log(gen.next().value);

代码咋一看不长,但如果仔细观察会发现有两个不认识的东西 —— regeneratorRuntime.mark和regeneratorRuntime.wrap,这两者其实是 regenerator-runtime 模块里的两个方法。

regenerator-runtime 模块来自facebook的 regenerator 模块,完整代码在runtime.js,这个runtime有700多行...-_-||,因此我们不能全讲,不太重要的部分我们就简单地过一下,重点讲解暂停执行相关部分代码。

个人觉得啃源码的效果不是很好,建议读者拉到末尾先看结论和简略版实现,源码作为一个补充理解。

regeneratorRuntime.mark()

regeneratorRuntime.mark(foo)这个方法在第一行被调用,我们先看一下runtime里mark()方法的定义。

//runtime.js里的定义稍有不同,多了一些判断,以下是编译后的代码
runtime.mark = function(genFun) {
  genFun.__proto__ = GeneratorFunctionPrototype;
  genFun.prototype = Object.create(Gp);
  return genFun;
};

这里边GeneratorFunctionPrototype和Gp我们都不认识,他们被定义在runtime里,不过没关系,我们只要知道mark()方法为生成器函数(foo)绑定了一系列原型就可以了,这里就简单地过了。

regeneratorRuntime.wrap()

从上面babel转化的代码我们能看到,执行foo(),其实就是执行wrap(),那么这个方法起到什么作用呢,他想包装一个什么东西呢,我们先来看看wrap方法的定义:

//runtime.js里的定义稍有不同,多了一些判断,以下是编译后的代码
function wrap(innerFn, outerFn, self) {
  var generator = Object.create(outerFn.prototype);
  var context = new Context([]);
  generator._invoke = makeInvokeMethod(innerFn, self, context);

  return generator;
}

wrap方法先是创建了一个generator,并继承outerFn.prototype;然后new了一个context对象;makeInvokeMethod方法接收innerFn(对应foo$)、context和this,并把返回值挂到generator._invoke上;最后return了generator。

其实wrap()相当于是给generator增加了一个_invoke方法。

这段代码肯定让人产生很多疑问,outerFn.prototype是什么,Context又是什么,makeInvokeMethod又做了哪些操作。下面我们就来一一解答:

outerFn.prototype其实就是genFun.prototype

这个我们结合一下上面的代码就能知道

context可以直接理解为这样一个全局对象,用于储存各种状态和上下文:

var ContinueSentinel = {};

var context = {
  done: false,
  method: "next",
  next: 0,
  prev: 0,
  abrupt: function(type, arg) {
    var record = {};
    record.type = type;
    record.arg = arg;

    return this.complete(record);
  },
  complete: function(record, afterLoc) {
    if (record.type === "return") {
      this.rval = this.arg = record.arg;
      this.method = "return";
      this.next = "end";
    }

    return ContinueSentinel;
  },
  stop: function() {
    this.done = true;
    return this.rval;
  }
};

makeInvokeMethod的定义如下,它return了一个invoke方法,invoke用于判断当前状态和执行下一步,其实就是我们调用的next()

//以下是编译后的代码
function makeInvokeMethod(innerFn, context) {
  // 将状态置为start
  var state = "start";

  return function invoke(method, arg) {
    // 已完成
    if (state === "completed") {
      return { value: undefined, done: true };
    }
    
    context.method = method;
    context.arg = arg;

    // 执行中
    while (true) {
      state = "executing";

      var record = {
        type: "normal",
        arg: innerFn.call(self, context)    // 执行下一步,并获取状态(其实就是switch里边return的值)
      };

      if (record.type === "normal") {
        // 判断是否已经执行完成
        state = context.done ? "completed" : "yield";

        // ContinueSentinel其实是一个空对象,record.arg === {}则跳过return进入下一个循环
        // 什么时候record.arg会为空对象呢, 答案是没有后续yield语句或已经return的时候,也就是switch返回了空值的情况(跟着上面的switch走一下就知道了)
        if (record.arg === ContinueSentinel) {
          continue;
        }
        // next()的返回值
        return {
          value: record.arg,
          done: context.done
        };
      }
    }
  };
}

为什么generator._invoke实际上就是gen.next呢,因为在runtime对于next()的定义中,next()其实就return了_invoke方法

// Helper for defining the .next, .throw, and .return methods of the
// Iterator interface in terms of a single ._invoke method.
function defineIteratorMethods(prototype) {
    ["next", "throw", "return"].forEach(function(method) {
      prototype[method] = function(arg) {
        return this._invoke(method, arg);
      };
    });
}

defineIteratorMethods(Gp);

低配实现 & 调用流程分析

这么一遍源码下来,估计很多读者还是懵逼的,毕竟源码中纠集了很多概念和封装,一时半会不好完全理解,让我们跳出源码,实现一个简单的Generator,然后再回过头看源码,会得到更清晰的认识。

// 生成器函数根据yield语句将代码分割为switch-case块,后续通过切换_context.prev和_context.next来分别执行各个case
function gen$(_context) {
  while (1) {
    switch (_context.prev = _context.next) {
      case 0:
        _context.next = 2;
        return 'result1';

      case 2:
        _context.next = 4;
        return 'result2';

      case 4:
        _context.next = 6;
        return 'result3';

      case 6:
      case "end":
        return _context.stop();
    }
  }
}

// 低配版context  
var context = {
  next:0,
  prev: 0,
  done: false,
  stop: function stop () {
    this.done = true
  }
}

// 低配版invoke
let gen = function() {
  return {
    next: function() {
      value = context.done ? undefined: gen$(context)
      done = context.done
      return {
        value,
        done
      }
    }
  }
} 

// 测试使用
var g = gen() 
g.next()  // {value: "result1", done: false}
g.next()  // {value: "result2", done: false}
g.next()  // {value: "result3", done: false}
g.next()  // {value: undefined, done: true}

这段代码并不难理解,我们分析一下调用流程:

  • 我们定义的function*生成器函数被转化为以上代码
  • 转化后的代码分为三大块:
  1. gen$(_context)由yield分割生成器函数代码而来
  2. context对象用于储存函数执行上下文
  3. invoke()方法定义next(),用于执行gen$(_context)来跳到下一步
  • 当我们调用g.next(),就相当于调用invoke()方法,执行gen$(_context),进入switch语句,switch根据context的标识,执行对应的case块,return对应结果
  • 当生成器函数运行到末尾(没有下一个yield或已经return),switch匹配不到对应代码块,就会return空值,这时g.next()返回{value: undefined, done: true}

从中我们可以看出,Generator实现的核心在于上下文的保存,函数并没有真的被挂起,每一次yield,其实都执行了一遍传入的生成器函数,只是在这个过程中间用了一个context对象储存上下文,使得每次执行生成器函数的时候,都可以从上一个执行结果开始执行,看起来就像函数被挂起了一样。



相关推荐

# Python 3 # Python 3字典Dictionary(1)

Python3字典字典是另一种可变容器模型,且可存储任意类型对象。字典的每个键值(key=>value)对用冒号(:)分割,每个对之间用逗号(,)分割,整个字典包括在花括号({})中,格式如...

Python第八课:数据类型中的字典及其函数与方法

Python3字典字典是另一种可变容器模型,且可存储任意类型对象。字典的每个键值...

Python中字典详解(python 中字典)

字典是Python中使用键进行索引的重要数据结构。它们是无序的项序列(键值对),这意味着顺序不被保留。键是不可变的。与列表一样,字典的值可以保存异构数据,即整数、浮点、字符串、NaN、布尔值、列表、数...

Python3.9又更新了:dict内置新功能,正式版十月见面

机器之心报道参与:一鸣、JaminPython3.8的热乎劲还没过去,Python就又双叒叕要更新了。近日,3.9版本的第四个alpha版已经开源。从文档中,我们可以看到官方透露的对dic...

Python3 基本数据类型详解(python三种基本数据类型)

文章来源:加米谷大数据Python中的变量不需要声明。每个变量在使用前都必须赋值,变量赋值以后该变量才会被创建。在Python中,变量就是变量,它没有类型,我们所说的"类型"是变...

一文掌握Python的字典(python字典用法大全)

字典是Python中最强大、最灵活的内置数据结构之一。它们允许存储键值对,从而实现高效的数据检索、操作和组织。本文深入探讨了字典,涵盖了它们的创建、操作和高级用法,以帮助中级Python开发...

超级完整|Python字典详解(python字典的方法或操作)

一、字典概述01字典的格式Python字典是一种可变容器模型,且可存储任意类型对象,如字符串、数字、元组等其他容器模型。字典的每个键值key=>value对用冒号:分割,每个对之间用逗号,...

Python3.9版本新特性:字典合并操作的详细解读

处于测试阶段的Python3.9版本中有一个新特性:我们在使用Python字典时,将能够编写出更可读、更紧凑的代码啦!Python版本你现在使用哪种版本的Python?3.7分?3.5分?还是2.7...

python 自学,字典3(一些例子)(python字典有哪些基本操作)

例子11;如何批量复制字典里的内容2;如何批量修改字典的内容3;如何批量修改字典里某些指定的内容...

Python3.9中的字典合并和更新,几乎影响了所有Python程序员

全文共2837字,预计学习时长9分钟Python3.9正在积极开发,并计划于今年10月发布。2月26日,开发团队发布了alpha4版本。该版本引入了新的合并(|)和更新(|=)运算符,这个新特性几乎...

Python3大字典:《Python3自学速查手册.pdf》限时下载中

最近有人会想了,2022了,想学Python晚不晚,学习python有前途吗?IT行业行业薪资高,发展前景好,是很多求职群里严重的香饽饽,而要进入这个高薪行业,也不是那么轻而易举的,拿信工专业的大学生...

python学习——字典(python字典基本操作)

字典Python的字典数据类型是基于hash散列算法实现的,采用键值对(key:value)的形式,根据key的值计算value的地址,具有非常快的查取和插入速度。但它是无序的,包含的元素个数不限,值...

324页清华教授撰写【Python 3 菜鸟查询手册】火了,小白入门字典

如何入门学习python...

Python3.9中的字典合并和更新,了解一下

全文共2837字,预计学习时长9分钟Python3.9正在积极开发,并计划于今年10月发布。2月26日,开发团队发布了alpha4版本。该版本引入了新的合并(|)和更新(|=)运算符,这个新特性几乎...

python3基础之字典(python中字典的基本操作)

字典和列表一样,也是python内置的一种数据结构。字典的结构如下图:列表用中括号[]把元素包起来,而字典是用大括号{}把元素包起来,只不过字典的每一个元素都包含键和值两部分。键和值是一一对应的...

取消回复欢迎 发表评论:

请填写验证码