百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程字典 > 正文

准确率、精准率、召回率、F1,我们真了解这些评价指标的意义吗

toyiye 2024-06-21 12:21 10 浏览 0 评论



本文首发于知乎 https://zhuanlan.zhihu.com/p/147663370

作者 | NaNNN

编辑 | 丛末

1

前言

众所周知,机器学习分类模型常用评价指标有Accuracy, Precision, Recall和F1-score,而回归模型最常用指标有MAE和RMSE。但是我们真正了解这些评价指标的意义吗?

在具体场景(如不均衡多分类)中到底应该以哪种指标为主要参考呢?多分类模型和二分类模型的评价指标有啥区别?多分类问题中,为什么Accuracy = micro precision = micro recall = micro F1-score? 什么时候用macro, weighted, micro precision/ recall/ F1-score?

这几天为了回复严谨(划去: 刁难)的reviewer,我查阅了一些文章,总算是梳理清楚啦。在这里分享给大家,权当做个总结。今天要讲的主要分为以下两点:

  • 二分类模型的常见指标快速回顾
  • 多分类模型的常见指标详细解析

在探讨这些问题前,让我们先回顾一下最常见的指标Accuracy到底有哪些不足。

Accuracy是分类问题中最常用的指标,它计算了分类正确的预测数与总预测数的比值。但是,对于不平衡数据集而言,Accuracy并不是一个好指标。为啥?

假设我们有100张图片,其中91张图片是「狗」,5张是「猫」,4张是「猪」,我们希望训练一个三分类器,能正确识别图片里动物的类别。其中,狗这个类别就是大多数类 (majority class)。当大多数类中样本(狗)的数量远超过其他类别(猫、猪)时,如果采用Accuracy来评估分类器的好坏,那么即便模型性能很差 (如无论输入什么图片,都预测为「狗」),也可以得到较高的Accuracy Score(如91%)。此时,虽然Accuracy Score很高,但是意义不大。当数据异常不平衡时,Accuracy评估方法的缺陷尤为显著。

因此,我们需要引入Precision (精准度),Recall (召回率)和F1-score评估指标。考虑到二分类和多分类模型中,评估指标的计算方法略有不同,我们将其分开讨论。

2

二分类模型的常见指标快速回顾

在二分类问题中,假设该样本一共有两种类别:Positive和Negative。当分类器预测结束,我们可以绘制出混淆矩阵(confusion matrix)。其中分类结果分为如下几种:

  • True Positive (TP): 把正样本成功预测为正。
  • True Negative (TN):把负样本成功预测为负。
  • False Positive (FP):把负样本错误地预测为正。
  • False Negative (FN):把正样本错误的预测为负。


在二分类模型中,Accuracy,Precision,Recall和F1 score的定义如下:

其中,Precision着重评估在预测为Positive的所有数据中,真实Positve的数据到底占多少?Recall着重评估:在所有的Positive数据中,到底有多少数据被成功预测为Positive?

举个例子,一个医院新开发了一套癌症AI诊断系统,想评估其性能好坏。我们把病人得了癌症定义为Positive,没得癌症定义为Negative。那么, 到底该用什么指标进行评估呢?

如用Precision对系统进行评估,那么其回答的问题就是:

在诊断为癌症的一堆人中,到底有多少人真得了癌症?

如用Recall对系统进行评估,那么其回答的问题就是:

在一堆得了癌症的病人中,到底有多少人能被成功检测出癌症?

如用Accuracy对系统进行评估,那么其回答的问题就是:

在一堆癌症病人和正常人中,有多少人被系统给出了正确诊断结果(患癌或没患癌)?

OK,那啥时候应该更注重Recall而不是Precision呢?

当False Negative (FN)的成本代价很高 (后果很严重),希望尽量避免产生FN时,应该着重考虑提高Recall指标。

在上述例子里,False Negative是得了癌症的病人没有被诊断出癌症,这种情况是最应该避免的。我们宁可把健康人误诊为癌症 (FP),也不能让真正患病的人检测不出癌症 (FN) 而耽误治疗离世。在这里,癌症诊断系统的目标是:尽可能提高Recall值,哪怕牺牲一部分Precision。

那啥时候应该更注重Precision而不是Recall呢?

当False Positive (FP)的成本代价很高 (后果很严重)时,即期望尽量避免产生FP时,应该着重考虑提高Precision指标。

以垃圾邮件屏蔽系统为例,垃圾邮件为Positive,正常邮件为Negative,False Positive是把正常邮件识别为垃圾邮件,这种情况是最应该避免的(你能容忍一封重要工作邮件直接进了垃圾箱,被不知不觉删除吗?)。我们宁可把垃圾邮件标记为正常邮件 (FN),也不能让正常邮件直接进垃圾箱 (FP)。在这里,垃圾邮件屏蔽系统的目标是:尽可能提高Precision值,哪怕牺牲一部分recall。

而F1-score是Precision和Recall两者的综合。

举个更有意思的例子(我拍脑袋想出来的,绝对原创哈),假设检察机关想将罪犯捉拿归案,需要对所有人群进行分析,以判断某人犯了罪(Positive),还是没犯罪(Negative)。显然,检察机关希望不漏掉一个罪人(提高recall),也不错怪一个好人(提高precision),所以就需要同时权衡recall和precision两个指标。

尤其在上个世纪,中国司法体制会更偏向Recall,即「天网恢恢,疏而不漏,任何罪犯都插翅难飞」。而西方司法系统会更偏向Precision,即「绝不冤枉一个好人,但是难免有罪犯成为漏网之鱼,逍遥法外」。到底是哪种更好呢?显然,极端并不可取。Precision和Recall都应该越高越好,也就是F1应该越高越好。

呼,二分类问题的常见指标和试用场景终于讲完了。咦,说好的快速回顾呢?

3

多分类模型的常见指标解析

在多分类(大于两个类)问题中,假设我们要开发一个动物识别系统,来区分输入图片是猫,狗还是猪。给定分类器一堆动物图片,产生了如下结果混淆矩阵。

在混淆矩阵中,正确的分类样本(Actual label = Predicted label)分布在左上到右下的对角线上。其中,Accuracy的定义为分类正确(对角线上)的样本数与总样本数的比值。Accuracy度量的是全局样本预测情况。而对于Precision和Recall而言,每个类都需要单独计算其Precision和Recall。

比如,对类别「猪」而言,其Precision和Recall分别为:

也就是,

(P代表Precision)

(R代表Recall)

如果想评估该识别系统的总体功能,必须考虑猫、狗、猪三个类别的综合预测性能。那么,到底要怎么综合这三个类别的Precision呢?是简单加起来做平均吗?通常来说, 我们有如下几种解决方案(也可参考scikit-learn官网):

1、Macro-average方法

该方法最简单,直接将不同类别的评估指标(Precision/ Recall/ F1-score)加起来求平均,给所有类别相同的权重。该方法能够平等看待每个类别,但是它的值会受稀有类别影响。

2、 Weighted-average方法

该方法给不同类别不同权重(权重根据该类别的真实分布比例确定),每个类别乘权重后再进行相加。该方法考虑了类别不平衡情况,它的值更容易受到常见类(majority class)的影响。

(W代表权重,N代表样本在该类别下的真实数目)

3、Micro-average方法

该方法把每个类别的TP, FP, FN先相加之后,在根据二分类的公式进行计算。

其中,特别有意思的是,Micro-precision和Micro-recall竟然始终相同!这是为啥呢?

这是因为在某一类中的False Positive样本,一定是其他某类别的False Negative样本。听起来有点抽象?举个例子,比如说系统错把「狗」预测成「猫」,那么对于狗而言,其错误类型就是False Negative,对于猫而言,其错误类型就是False Positive。于此同时,Micro-precision和Micro-recall的数值都等于Accuracy,因为它们计算了对角线样本数和总样本数的比值,总结就是:

最后,我们运行一下代码,检验手动计算结果是否和Sklearn包结果一致:

import numpy as np
import seaborn as sns
from sklearn.metrics import confusion_matrix
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, average_precision_score,precision_score,f1_score,recall_score
# create confusion matrix
y_true = np.array([-1]*70 + [0]*160 + [1]*30)
y_pred = np.array([-1]*40 + [0]*20 + [1]*20 +
[-1]*30 + [0]*80 + [1]*30 +
[-1]*5 + [0]*15 + [1]*20)
cm = confusion_matrix(y_true, y_pred)
conf_matrix = pd.DataFrame(cm, index=['Cat','Dog','Pig'], columns=['Cat','Dog','Pig'])
# plot size setting
fig, ax = plt.subplots(figsize = (4.5,3.5))
sns.heatmap(conf_matrix, annot=True, annot_kws={"size": 19}, cmap="Blues")
plt.ylabel('True label', fontsize=18)
plt.xlabel('Predicted label', fontsize=18)
plt.xticks(fontsize=18)
plt.yticks(fontsize=18)
plt.savefig('confusion.pdf', bbox_inches='tight')
plt.show


print('------Weighted------')
print('Weighted precision', precision_score(y_true, y_pred, average='weighted'))
print('Weighted recall', recall_score(y_true, y_pred, average='weighted'))
print('Weighted f1-score', f1_score(y_true, y_pred, average='weighted'))
print('------Macro------')
print('Macro precision', precision_score(y_true, y_pred, average='macro'))
print('Macro recall', recall_score(y_true, y_pred, average='macro'))
print('Macro f1-score', f1_score(y_true, y_pred, average='macro'))
print('------Micro------')
print('Micro precision', precision_score(y_true, y_pred, average='micro'))
print('Micro recall', recall_score(y_true, y_pred, average='micro'))
print('Micro f1-score', f1_score(y_true, y_pred, average='micro'))


运算结果完全一致,OK,机器学习多分类模型的常见评估指标已经基本介绍完毕。

参考文章

  1. 4 Things You Need to Know about AI: Accuracy, Precision, Recall and F1 scores
  2. Multi-Class Metrics Made Simple, Part I: Precision and Recall
  3. Accuracy, Precision and Recall: Multi-class Performance Metrics for Supervised Learning

ACL 2020原定于2020年7月5日至10日在美国华盛顿西雅图举行,因新冠肺炎疫情改为线上会议。为促进学术交流,方便国内师生提早了解自然语言处理(NLP)前沿研究,AI 科技评论将推出「ACL 实验室系列论文解读」内容,同时欢迎更多实验室参与分享,敬请期待!

相关推荐

为何越来越多的编程语言使用JSON(为什么编程)

JSON是JavascriptObjectNotation的缩写,意思是Javascript对象表示法,是一种易于人类阅读和对编程友好的文本数据传递方法,是JavaScript语言规范定义的一个子...

何时在数据库中使用 JSON(数据库用json格式存储)

在本文中,您将了解何时应考虑将JSON数据类型添加到表中以及何时应避免使用它们。每天?分享?最新?软件?开发?,Devops,敏捷?,测试?以及?项目?管理?最新?,最热门?的?文章?,每天?花?...

MySQL 从零开始:05 数据类型(mysql数据类型有哪些,并举例)

前面的讲解中已经接触到了表的创建,表的创建是对字段的声明,比如:上述语句声明了字段的名称、类型、所占空间、默认值和是否可以为空等信息。其中的int、varchar、char和decimal都...

JSON对象花样进阶(json格式对象)

一、引言在现代Web开发中,JSON(JavaScriptObjectNotation)已经成为数据交换的标准格式。无论是从前端向后端发送数据,还是从后端接收数据,JSON都是不可或缺的一部分。...

深入理解 JSON 和 Form-data(json和formdata提交区别)

在讨论现代网络开发与API设计的语境下,理解客户端和服务器间如何有效且可靠地交换数据变得尤为关键。这里,特别值得关注的是两种主流数据格式:...

JSON 语法(json 语法 priority)

JSON语法是JavaScript语法的子集。JSON语法规则JSON语法是JavaScript对象表示法语法的子集。数据在名称/值对中数据由逗号分隔花括号保存对象方括号保存数组JS...

JSON语法详解(json的语法规则)

JSON语法规则JSON语法是JavaScript对象表示法语法的子集。数据在名称/值对中数据由逗号分隔大括号保存对象中括号保存数组注意:json的key是字符串,且必须是双引号,不能是单引号...

MySQL JSON数据类型操作(mysql的json)

概述mysql自5.7.8版本开始,就支持了json结构的数据存储和查询,这表明了mysql也在不断的学习和增加nosql数据库的有点。但mysql毕竟是关系型数据库,在处理json这种非结构化的数据...

JSON的数据模式(json数据格式示例)

像XML模式一样,JSON数据格式也有Schema,这是一个基于JSON格式的规范。JSON模式也以JSON格式编写。它用于验证JSON数据。JSON模式示例以下代码显示了基本的JSON模式。{"...

前端学习——JSON格式详解(后端json格式)

JSON(JavaScriptObjectNotation)是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。它基于JavaScriptProgrammingLa...

什么是 JSON:详解 JSON 及其优势(什么叫json)

现在程序员还有谁不知道JSON吗?无论对于前端还是后端,JSON都是一种常见的数据格式。那么JSON到底是什么呢?JSON的定义...

PostgreSQL JSON 类型:处理结构化数据

PostgreSQL提供JSON类型,以存储结构化数据。JSON是一种开放的数据格式,可用于存储各种类型的值。什么是JSON类型?JSON类型表示JSON(JavaScriptO...

JavaScript:JSON、三种包装类(javascript 包)

JOSN:我们希望可以将一个对象在不同的语言中进行传递,以达到通信的目的,最佳方式就是将一个对象转换为字符串的形式JSON(JavaScriptObjectNotation)-JS的对象表示法...

Python数据分析 只要1分钟 教你玩转JSON 全程干货

Json简介:Json,全名JavaScriptObjectNotation,JSON(JavaScriptObjectNotation(记号、标记))是一种轻量级的数据交换格式。它基于J...

比较一下JSON与XML两种数据格式?(json和xml哪个好)

JSON(JavaScriptObjectNotation)和XML(eXtensibleMarkupLanguage)是在日常开发中比较常用的两种数据格式,它们主要的作用就是用来进行数据的传...

取消回复欢迎 发表评论:

请填写验证码