百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程字典 > 正文

实践教程最简单的代码实现语义分割

toyiye 2024-06-21 12:21 18 浏览 0 评论

来源丨小白学视觉

编辑丨极市平台

检测类数据集合集:http://m6z.cn/5ZBLEU

什么是语义分割?

它描述了将图像的每个像素与类别标签(例如花、人、道路、天空、海洋或汽车)相关联的过程,即我们要输入图像,然后为该图像中的每个像素输出一个类别决策。例如下面这个输入图像,这是一只坐在床上的狗:

因此,在输出中,我们希望为每个像素定义一组类别,即狗、床、后面的桌子和橱柜。在语义分割之后,图像看起来像这样:

关于语义分割的一件有趣的事情是它不区分实例,即如果此图像中有两只狗,它们将仅被描述为一个标签,即 dog ,而不是 dog1 和 dog2。

语义分割一般用于:

  • 自动驾驶
  • 工业检验
  • 卫星图像中值得注意的区域分类
  • 医学影像监查

语义分割实现:

  • 第一种方法是滑动窗口,我们将输入图像分解成许多小的局部图像,但是这种方法在计算上会很昂贵。所以,我们在实践中并没有真正使用这个方法。
  • 另一种方法是完全卷积网络,其中网络有一整堆卷积层,没有完全连接的层,从而保留了输入的空间大小,这在计算上也是极其昂贵的。
  • 第三个也是最好的一个方法,那就是对图像进行上采样和下采样。因此,我们不需要对图像的完整空间分辨率进行所有卷积,我们可能会在原始分辨率下遍历少量卷积层,然后对该特征图进行下采样,然后对其进行上采样。在这里,我们只想在网络的后半部分提高我们预测的空间分辨率,以便我们的输出图像现在可以与我们的输入图像具有相同的维度。它的计算效率要高得多,因为我们可以使网络非常深,并以更便宜的空间分辨率运行。

让我们在代码中实现这一点:

  • 导入处理所需的必要库
    Pytorch 的重要功能,例如数据加载器、变量、转换和优化器相关函数。导入 VOC12 和 cityscapes 的数据集类,从 transform.py 文件导入 Relabel、ToLabel 和 Colorize 类,从 iouEval.py 文件中导入 iouEval 类。
#SSCV IIITH 2K19
import random
import time
import numpy as np
import torch
print(torch.__version__)
import math
from PIL import Image, ImageOps
from torch.optim import SGD, Adam, lr_scheduler
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision.transforms import  Resize
from torchvision.transforms import ToTensor, ToPILImage
from dataset import cityscapes
from dataset import idd_lite
import sys
print(sys.executable)
from transform import Relabel, ToLabel, Colorize
import matplotlib
from matplotlib import pyplot as plt
%matplotlib inline
import importlib
from iouEval import iouEval, getColorEntry #importing iouEval class from the iouEval.py file
from shutil import copyfile
  • 定义几个全局参数:
NUM_CHANNELS = 3 #RGB Images
NUM_CLASSES = 8 #IDD Lite has 8 labels or Level1 hierarchy of labels
USE_CUDA = torch.cuda.is_available() 
IMAGE_HEIGHT = 160
DATA_ROOT = ‘/tmp/school/6-segmentation/user/1/6-segmentation/idd1_lite’
BATCH_SIZE = 2
NUM_WORKERS = 4
NUM_EPOCHS = 100
ENCODER_ONLY = True
device = torch.device(“cuda” )
#device = ‘cuda’
color_transform = Colorize(NUM_CLASSES)
image_transform = ToPILImage()
IOUTRAIN = False
IOUVAL = True
  • 增强, 即对图像和目标执行随机增强的不同功能:
class MyCoTransform(object):
 def __init__(self, enc, augment=True, height=160):
 self.enc=enc
 self.augment = augment
 self.height = height
 pass
 def __call__(self, input, target):
 # Resizing data to required size
 input = Resize((self.height,320), Image.BILINEAR)(input)
 target = Resize((self.height,320), Image.NEAREST)(target)
if(self.augment):
 # Random horizontal flip
 hflip = random.random()
 if (hflip < 0.5):
 input = input.transpose(Image.FLIP_LEFT_RIGHT)
 target = target.transpose(Image.FLIP_LEFT_RIGHT)
 
 #Random translation 0–2 pixels (fill rest with padding)
 transX = random.randint(0, 2) 
 transY = random.randint(0, 2)
input = ImageOps.expand(input, border=(transX,transY,0,0), fill=0)
 target = ImageOps.expand(target, border=(transX,transY,0,0), fill=7) #pad label filling with 7
 input = input.crop((0, 0, input.size[0]-transX, input.size[1]-transY))
 target = target.crop((0, 0, target.size[0]-transX, target.size[1]-transY))
input = ToTensor()(input)
 
 target = ToLabel()(target)
 
 target = Relabel(255,7)(target)
 return input, target
  • 加载数据 我们将遵循 pytorch 推荐的语义,并使用数据加载器加载数据。
best_acc = 0
co_transform = MyCoTransform(ENCODER_ONLY, augment=True, height=IMAGE_HEIGHT)
co_transform_val = MyCoTransform(ENCODER_ONLY, augment=False, height=IMAGE_HEIGHT)
#train data
dataset_train = idd_lite(DATA_ROOT, co_transform, ‘train’)
print(len(dataset_train))
#test data
dataset_val = idd_lite(DATA_ROOT, co_transform_val, ‘val’)
print(len(dataset_val))
loader_train = DataLoader(dataset_train, num_workers=NUM_WORKERS, batch_size=BATCH_SIZE, shuffle=True)
loader_val = DataLoader(dataset_val, num_workers=NUM_WORKERS, batch_size=BATCH_SIZE, shuffle=False)
  • 既然是分类问题,我们就使用交叉熵损失,但为什么呢?

答案是负对数,在较小值的时候效果不好,并且在较大值的时候效果也不好。因为我们将损失函数加到所有正确的类别上,实际发生的情况是,每当网络为正确的类别,分配高置信度时,损失就低,但是当网络为正确的类别时分配低置信度,损失就高。

criterion = torch.nn.CrossEntropyLoss()
  • 现在让我们加载模型并优化它!
model_file = importlib.import_module(‘erfnet’)
model = model_file.Net(NUM_CLASSES).to(device)
optimizer = Adam(model.parameters(), 5e-4, (0.9, 0.999), eps=1e-08, weight_decay=1e-4) 
start_epoch = 1
  • 所以,编码的最终本质就是训练!
import os
steps_loss = 50
my_start_time = time.time()
for epoch in range(start_epoch, NUM_EPOCHS+1):
 print(“ — — — TRAINING — EPOCH”, epoch, “ — — -”)
epoch_loss = []
 time_train = []
doIouTrain = IOUTRAIN 
 doIouVal = IOUVAL
if (doIouTrain):
 iouEvalTrain = iouEval(NUM_CLASSES)
model.train()
 for step, (images, labels) in enumerate(loader_train):
start_time = time.time()
 inputs = images.to(device)
 targets = labels.to(device)
 
 outputs = model(inputs, only_encode=ENCODER_ONLY)
# zero the parameter gradients
 optimizer.zero_grad()
 
 # forward + backward + optimize
 loss = criterion(outputs, targets[:, 0])
 loss.backward()
 optimizer.step()
epoch_loss.append(loss.item())
 time_train.append(time.time() — start_time)
if (doIouTrain):
 #start_time_iou = time.time()
 iouEvalTrain.addBatch(outputs.max(1)[1].unsqueeze(1).data, targets.data)
 #print (“Time to add confusion matrix: “, time.time() — start_time_iou)
# print statistics
 if steps_loss > 0 and step % steps_loss == 0:
 average = sum(epoch_loss) / len(epoch_loss)
 print(‘loss: {average:0.4} (epoch: {epoch}, step: {step})’, “// Avg time/img: %.4f s” % (sum(time_train) / len(time_train) / BATCH_SIZE))
average_epoch_loss_train = sum(epoch_loss) / len(epoch_loss)
iouTrain = 0
 if (doIouTrain):
 iouTrain, iou_classes = iouEvalTrain.getIoU()
 iouStr = getColorEntry(iouTrain)+’{:0.2f}’.format(iouTrain*100) + ‘\033[0m’
 print (“EPOCH IoU on TRAIN set: “, iouStr, “%”) 
my_end_time = time.time()
print(my_end_time — my_start_time)

在训练了 100 个 epoch 之后,我们会看到:

  • 验证:
#Validate on val images after each epoch of training
print(“ — — — VALIDATING — EPOCH”, epoch, “ — — -”)
model.eval()
epoch_loss_val = []
time_val = []
if (doIouVal):
 iouEvalVal = iouEval(NUM_CLASSES)
for step, (images, labels) in enumerate(loader_val):
 start_time = time.time()
inputs = images.to(device) 
 targets = labels.to(device)
 
 with torch.no_grad():
 outputs = model(inputs, only_encode=ENCODER_ONLY) 
 #outputs = model(inputs)
 loss = criterion(outputs, targets[:, 0])
 epoch_loss_val.append(loss.item())
 time_val.append(time.time() — start_time)
#Add batch to calculate TP, FP and FN for iou estimation
 if (doIouVal):
 #start_time_iou = time.time()
 iouEvalVal.addBatch(outputs.max(1)[1].unsqueeze(1).data, targets.data)
 #print (“Time to add confusion matrix: “, time.time() — start_time_iou)
 
 if steps_loss > 0 and step % steps_loss == 0:
 average = sum(epoch_loss_val) / len(epoch_loss_val)
 print(‘VAL loss: {average:0.4} (epoch: {epoch}, step: {step})’, 
 “// Avg time/img: %.4f s” % (sum(time_val) / len(time_val) / BATCH_SIZE))
average_epoch_loss_val = sum(epoch_loss_val) / len(epoch_loss_val)
iouVal = 0
if (doIouVal):
iouVal, iou_classes = iouEvalVal.getIoU()
 print(iou_classes)
 iouStr = getColorEntry(iouVal)+’{:0.2f}’.format(iouVal*100) + ‘\033[0m’
 print (“EPOCH IoU on VAL set: “, iouStr, “%”)

  • 可视化输出:
# Qualitative Analysis
dataiter = iter(loader_val)
images, labels = dataiter.next()
if USE_CUDA:
 images = images.to(device)
inputs = images.to(device)
with torch.no_grad():
 outputs = model(inputs, only_encode=ENCODER_ONLY)
label = outputs[0].max(0)[1].byte().cpu().data
label_color = Colorize()(label.unsqueeze(0))
label_save = ToPILImage()(label_color)
plt.figure()
plt.imshow(ToPILImage()(images[0].cpu()))
plt.figure()
plt.imshow(label_save)

输出图像

很快我们就可以准备好我们的模型了!

随意使用我们新设计的模型,尝试增加更多的 epoch 并观察我们的模型表现得更好!

因此,简而言之,现在我们将能够轻松地将图像的每个像素与类标签相关联,并可以调整超参数以查看显示的更改。本文展示了语义分割的基础知识,要对实例进行分类,我们需要进行实例分割,这是语义分割的高级版本。

相关推荐

为何越来越多的编程语言使用JSON(为什么编程)

JSON是JavascriptObjectNotation的缩写,意思是Javascript对象表示法,是一种易于人类阅读和对编程友好的文本数据传递方法,是JavaScript语言规范定义的一个子...

何时在数据库中使用 JSON(数据库用json格式存储)

在本文中,您将了解何时应考虑将JSON数据类型添加到表中以及何时应避免使用它们。每天?分享?最新?软件?开发?,Devops,敏捷?,测试?以及?项目?管理?最新?,最热门?的?文章?,每天?花?...

MySQL 从零开始:05 数据类型(mysql数据类型有哪些,并举例)

前面的讲解中已经接触到了表的创建,表的创建是对字段的声明,比如:上述语句声明了字段的名称、类型、所占空间、默认值和是否可以为空等信息。其中的int、varchar、char和decimal都...

JSON对象花样进阶(json格式对象)

一、引言在现代Web开发中,JSON(JavaScriptObjectNotation)已经成为数据交换的标准格式。无论是从前端向后端发送数据,还是从后端接收数据,JSON都是不可或缺的一部分。...

深入理解 JSON 和 Form-data(json和formdata提交区别)

在讨论现代网络开发与API设计的语境下,理解客户端和服务器间如何有效且可靠地交换数据变得尤为关键。这里,特别值得关注的是两种主流数据格式:...

JSON 语法(json 语法 priority)

JSON语法是JavaScript语法的子集。JSON语法规则JSON语法是JavaScript对象表示法语法的子集。数据在名称/值对中数据由逗号分隔花括号保存对象方括号保存数组JS...

JSON语法详解(json的语法规则)

JSON语法规则JSON语法是JavaScript对象表示法语法的子集。数据在名称/值对中数据由逗号分隔大括号保存对象中括号保存数组注意:json的key是字符串,且必须是双引号,不能是单引号...

MySQL JSON数据类型操作(mysql的json)

概述mysql自5.7.8版本开始,就支持了json结构的数据存储和查询,这表明了mysql也在不断的学习和增加nosql数据库的有点。但mysql毕竟是关系型数据库,在处理json这种非结构化的数据...

JSON的数据模式(json数据格式示例)

像XML模式一样,JSON数据格式也有Schema,这是一个基于JSON格式的规范。JSON模式也以JSON格式编写。它用于验证JSON数据。JSON模式示例以下代码显示了基本的JSON模式。{"...

前端学习——JSON格式详解(后端json格式)

JSON(JavaScriptObjectNotation)是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。它基于JavaScriptProgrammingLa...

什么是 JSON:详解 JSON 及其优势(什么叫json)

现在程序员还有谁不知道JSON吗?无论对于前端还是后端,JSON都是一种常见的数据格式。那么JSON到底是什么呢?JSON的定义...

PostgreSQL JSON 类型:处理结构化数据

PostgreSQL提供JSON类型,以存储结构化数据。JSON是一种开放的数据格式,可用于存储各种类型的值。什么是JSON类型?JSON类型表示JSON(JavaScriptO...

JavaScript:JSON、三种包装类(javascript 包)

JOSN:我们希望可以将一个对象在不同的语言中进行传递,以达到通信的目的,最佳方式就是将一个对象转换为字符串的形式JSON(JavaScriptObjectNotation)-JS的对象表示法...

Python数据分析 只要1分钟 教你玩转JSON 全程干货

Json简介:Json,全名JavaScriptObjectNotation,JSON(JavaScriptObjectNotation(记号、标记))是一种轻量级的数据交换格式。它基于J...

比较一下JSON与XML两种数据格式?(json和xml哪个好)

JSON(JavaScriptObjectNotation)和XML(eXtensibleMarkupLanguage)是在日常开发中比较常用的两种数据格式,它们主要的作用就是用来进行数据的传...

取消回复欢迎 发表评论:

请填写验证码