百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程字典 > 正文

机器学习人工神经网络ANN

toyiye 2024-04-27 03:47 17 浏览 0 评论

神经网络是从生物领域自然的鬼斧神工中学习智慧的一种应用。人工神经网络(ANN)的发展经历的了几次高潮低谷,如今,随着数据爆发、硬件计算能力暴增、深度学习算法的优化,我们迎来了又一次的ANN雄起时代,以深度学习为首的人工神经网络,又一次走入人们的视野。

感知机模型perception

不再处理离散情况,而是连续的数值,学习时权值在变化,从而记忆存储学到的知识

神经元输入:类似于线性回归z =w1x1+w2x2 +? +wnxn= wT?x(linear threshold unit (LTU))

神经元输出:激活函数,类似于二值分类,模拟了生物学中神经元只有激发和抑制两种状态。

增加篇值,输出层哪个节点权重大,输出哪一个。

采用Hebb准则,下一个权重调整方法参考当前权重和训练效果

#一个感知机的例子

import numpy as np

from sklearn.datasets import load_iris

from sklearn.linear_model import Perceptron

iris = load_iris()

X = iris.data[:, (2, 3)] # petal length, petal width

y = (iris.target == 0).astype(np.int) # Iris Setosa?

per_clf = Perceptron(random_state=42)

per_clf.fit(X, y)

y_pred = per_clf.predict([[2, 0.5]]

之后有人提出,perception无法处理异或问题,但是,使用多层感知机(MLP)可以处理这个问题

def heaviside(z):

return (z >= 0).astype(z.dtype)

def sigmoid(z):

return 1/(1+np.exp(-z))

#做了多层activation,手工配置权重

def mlp_xor(x1, x2, activation=heaviside):

return activation(-activation(x1 + x2 - 1.5) + activation(x1 + x2 - 0.5) - 0.5)

如图所示,两层MLP,包含输入层,隐层,输出层。所谓的深度神经网络,就是隐层数量多一些。

激活函数

以下是几个激活函数的例子,其微分如右图所示

step是最早提出的一种激活函数,但是它在除0外所有点的微分都是0,没有办法计算梯度

logit和双曲正切函数tanh梯度消失,数据量很大时,梯度无限趋近于0,

relu在层次很深时梯度也不为0,无限传导下去。

如何自动化学习计算权重——backpropagation

首先正向做一个计算,根据当前输出做一个error计算,作为指导信号反向调整前一层输出权重使其落入一个合理区间,反复这样调整到第一层,每轮调整都有一个学习率,调整结束后,网络越来越合理。

step函数换成逻辑回归函数σ(z) = 1 / (1 + exp(–z)),无论x落在哪个区域,最后都有一个非0的梯度可以使用,落在(0,1)区间。

双曲正切函数The hyperbolic tangent function tanh (z) = 2σ(2z) – 1,在(-1,1)的区间。

The ReLU function ReLU (z) = max (0, z),层次很深时不会越传递越小。

多分类时,使用softmax(logistics激活函数)最为常见。

使用MLP多分类输出层为softmax,隐层倾向于使用ReLU,因为向前传递时不会有数值越来越小得不到训练的情况产生。

以mnist数据集为例

import tensorflow as tf

# construction phase

n_inputs = 28*28 # MNIST

# 隐藏层节点数目

n_hidden1 = 300

n_hidden2 = 100

n_outputs = 10

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")

y = tf.placeholder(tf.int64, shape=(None), name="y")

def neuron_layer(X, n_neurons, name, activation=None):

with tf.name_scope(name):

n_inputs = int(X.get_shape()[1])

# 标准差初始设定,研究证明设为以下结果训练更快

stddev = 2 / np.sqrt(n_inputs)

# 使用截断的正态分布,过滤掉极端的数据,做了一个初始权重矩阵,是input和neurons的全连接矩阵

init = tf.truncated_normal((n_inputs, n_neurons), stddev=stddev)

W = tf.Variable(init, name="weights")

# biases项初始化为0

b = tf.Variable(tf.zeros([n_neurons]), name="biases")

# 该层输出

z = tf.matmul(X, W) + b

# 根据activation选择激活函数

if activation=="relu":

return tf.nn.relu(z)

else:

return z

with tf.name_scope("dnn"):

# 算上输入层一共4层的dnn结构

hidden1 = neuron_layer(X, n_hidden1, "hidden1", activation="relu")

hidden2 = neuron_layer(hidden1, n_hidden2, "hidden2", activation="relu")

# 直接输出最后结果值

logits = neuron_layer(hidden2, n_outputs, "outputs")

# 使用TensorFlow自带函数实现,最新修改成dense函数

from tensorflow.contrib.layers import fully_connected

with tf.name_scope("dnn"):

hidden1 = fully_connected(X, n_hidden1, scope="hidden1")

hidden2 = fully_connected(hidden1, n_hidden2, scope="hidden2")

logits = fully_connected(hidden2, n_outputs, scope="outputs", activation_fn=None)

# 使用logits(网络输出)计算交叉熵,取均值为误差

with tf.name_scope("loss"):

xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)

loss = tf.reduce_mean(xentropy, name="loss")

learning_rate = 0.01

with tf.name_scope("train"):

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

training_op = optimizer.minimize(loss)

with tf.name_scope("eval"):

correct = tf.nn.in_top_k(logits, y, 1)

accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))

init = tf.global_variables_initializer()

saver = tf.train.Saver()

# Execution Phase

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("/tmp/data/")

# 外层大循环跑400次,每个循环中小循环数据量50

n_epochs = 400

batch_size = 50

with tf.Session() as sess:

init.run()

for epoch in range(n_epochs):

for iteration in range(mnist.train.num_examples // batch_size):

X_batch, y_batch = mnist.train.next_batch(batch_size)

sess.run(training_op, feed_dict={X: X_batch, y: y_batch})

acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})

acc_test = accuracy.eval(feed_dict={X: mnist.test.images,y: mnist.test.labels})

print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)

# 下次再跑模型时不用再次训练了

save_path = saver.save(sess, "./my_model_final.ckpt")

# 下次调用

with tf.Session() as sess:

saver.restore(sess, "./my_model_final.ckpt") # or better, use save_path

X_new_scaled = mnist.test.images[:20]

Z = logits.eval(feed_dict={X: X_new_scaled})

y_pred = np.argmax(Z, axis=1)

超参数设置

隐层数量:一般来说单个隐层即可,对于复杂问题,由于深层模型可以实现浅层的指数级别的效果,且每层节点数不多,加至overfit就不要再加了。

每层神经元数量:以漏斗形逐层递减,输入层最多,逐渐features更少代表性更强。

激活函数选择(activation function):隐层多选择ReLU,输出层多选择softmax

原文:http://www.cnblogs.com/rucwxb/p/7865021.html

相关推荐

Python 可视化工具包(python常见的可视化工具)

喜欢用Python做项目的小伙伴不免会遇到这种情况:做图表时,用哪种好看又实用的可视化工具包呢?本文将介绍一些常用的Python可视化包,包括这些包的优缺点以及分别适用于什么样的场景。这篇文章...

Python的GPU编程实例——近邻表计算

目录技术背景...

python算法体验-3.python实现欧式距离的三种方式

欧式距离也称欧几里得距离,是最常见的距离度量,衡量的是多维空间中两个点之间的绝对距离。欧式距离源自N维欧氏空间中两点...

python实现Lasso回归分析(特征筛选、建模预测)

实现功能:...

python语言检测模块langid、langdetect使用

本文首发地址:https://blog.csdn.net/Together_CZ/article/details/86678423欢迎关注我的博客【Together_CZ】,我是沂水寒城!之前使用数据...

7天学会Python最佳可视化工具Seaborn(一):可视化变量间的关系

众所周知,Seaborn“可能”是Python下最友好、易用的可视化工具了,可视化效果也非常好。但是截止目前,并没有一份中文教程供广大国内Python使用者查阅学习。怎么能因为语言的问题,让大家错过这...

在Python中使用K-Means聚类和PCA主成分分析进行图像压缩

各位读者好,在这篇文章中我们尝试使用sklearn库比较k-means聚类算法和主成分分析(PCA)在图像压缩上的实现和结果。压缩图像的效果通过占用的减少比例以及和原始图像的差异大小来评估。图像压...

OpenCV-Python 相机校准 | 四十九

目标在本节中,我们将学习由相机引起的失真类型,如何找到相机的固有和非固有特性如何根据这些特性使图像不失真基础一些针孔相机会给图像带来明显的失真。两种主要的变形是径向变形和切向变形。径向变形会导致直线出...

python数据预处理技术(python 数据预处理)

在真实世界中,经常需要处理大量的原始数据,这些原始数据是机器学习算法无法理解的。为了让机器学习算法理解原始数据,需要对数据进行预处理。我们运行anaconda集成环境下的“jupyternotebo...

【Python可视化系列】一文教你绘制不同类型散点图(理论+源码)

这是...

OpenCV-Python 特征匹配 | 四十四

目标在本章中,我们将看到如何将一个图像中的特征与其他图像进行匹配。我们将在OpenCV中使用Brute-Force匹配器和FLANN匹配器Brute-Force匹配器的基础蛮力匹配器很简单。它使用第一...

实战python中Random模块使用(python中的random模块)

一、random模块简介Python标准库中的random函数,可以生成随机浮点数、整数、字符串,甚至帮助你随机选择列表序列中的一个元素,打乱一组数据等。要在Python中使用random模块,只需要...

Python随机模块22个函数详解(python随机函数的应用)

随机数可以用于数学,游戏,安全等领域中,还经常被嵌入到算法中,用以提高算法效率,并提高程序的安全性。平时数据分析各种分布的数据构造也会用到。random模块,用于生成伪随机数,之所以称之为伪随机数,是...

说冲A就冲A,这个宝藏男孩冯俊杰我pick了

爱奇艺新上架了一部网剧叫《最后一个女神》。有个惊人的发现,剧里男三居然是《青春有你》的训练生冯俊杰。剧组穷,戏服没几件,冯俊杰几乎靠一件背背佳撑起了整部剧。冯俊杰快速了解一下。四川人,来自觉醒东方,人...

唐山打人嫌犯陈继志去医院就医的背后,隐藏着三个精心设计的步骤

种种迹象表明,陈继志这帮人对处理打人之后的善后工作是轻车驾熟的,他们想实施的计划应该是这样的:首先第一步与伤者进同一家医院做伤情鉴定,鉴定级别最好要比对方严重,于是两位女伤者被鉴定为轻伤,他们就要求医...

取消回复欢迎 发表评论:

请填写验证码