百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程字典 > 正文

基于GAN提高非平衡COVID-19死亡率预测模型准确性

toyiye 2024-06-21 12:24 9 浏览 0 评论

介绍

本文介绍了生成性对抗网络(Generative attersarial Networks,GAN)的使用,这是一种对真实的Covid-19数据进行过采样的技术,用于预测死亡率。这个故事让我们更好地理解数据准备步骤(如处理不平衡的数据)如何提高模型性能。

本文的数据和核心模型来自Celestine Iwendi、Ali Kashif Bashir、Atharva Peshkar最近的一项研究(2020年7月)“使用增强随机森林算法预测COVID-19患者健康”。本研究使用ADABOST模型增强的随机森林算法预测个体患者的死亡率,准确率为94%。本文考虑相同的模型和模型参数,明确分析了采用基于GAN的过采样技术对现有模型的改进。

对于有抱负的数据科学家来说,学习良好实践的最好方法之一就是参加不同论坛上的黑客竞赛,比如Vidhya、Kaggle或其他论坛。

此外,从这些论坛或出版的研究出版物中获取已解决的案例和数据;了解他们的方法,并尝试通过额外的步骤来提高准确性或减少误差。这将形成一个坚实的基础,使我们能够深入思考我们在数据科学价值链中所学的其他技术的应用。

研究中使用的数据是用222个病人的13个特征来训练的。数据有偏差,159例(72%)属于“0”类或“已恢复”类。由于其偏差性质,各种欠采样/过采样技术可应用于数据。偏态数据的问题会导致预测模型的过度拟合。

为了克服这一局限性,许多研究采用过采样方法来平衡数据集,从而得到更精确的模型训练。过采样是一种通过增加少数数据中的样本数量来补偿数据集不平衡的技术。

常规方法包括随机过采样(ROS)、合成少数过采样技术(SMOTE)等。

最近,一种基于对抗性学习概念的生成性网络的机器学习模型被提出,即生成性对抗性网络。生成性对抗网络(Generative atterial Networks,GAN)的特点使其较易应用于过采样研究,因为基于对抗训练的神经网络的性质允许生成与原始数据相似的人工数据。基于生成性对抗网络的过采样克服了传统方法(如过拟合)的局限性,允许建立一个高精度的不平衡数据预测模型。

如何生成合成数据?

两个神经网络相互竞争,学习目标分布并生成人工数据

发生器网络G:模拟训练样本欺骗鉴别器

判别网络D:判别训练样本和生成样本

生成性对抗性网络是基于博弈论的场景,其中生成网络必须与对手竞争。随着GAN学会模拟数据的分布,它被应用于各个领域,如音乐、视频和自然语言,最近还用于处理不平衡的数据问题。

研究中使用的数据和基本模型可以在这里找到

import pandas as pd  
import numpy as np  
import matplotlib.pyplot as plt  
import seaborn as sns  
import tensorflow as tf  
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, BatchNormalization, Embedding  
from keras.layers.advanced_activations import LeakyReLU  
from keras.layers.merge import concatenate  
from keras.models import Sequential, Model  
from keras.optimizers import Adam  
from keras.utils import to_categorical  
from keras.layers.advanced_activations import LeakyReLU  
from keras.utils.vis_utils import plot_model  
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, LabelEncoder  
import scipy.stats  
import datetime as dt  
import pydot  
import warnings  
warnings.filterwarnings("ignore")  
%matplotlib inline  

df = pd.read_csv('Covid_Train_Oct32020.csv')  
df = df.drop('id',axis=1)  
df = df.fillna(np.nan,axis=0)  
df['age'] = df['age'].fillna(value=df['age'].mean())  

df['sym_on'] = pd.to_datetime(df['sym_on'])  
df['hosp_vis'] = pd.to_datetime(df['hosp_vis'])  
df['sym_on']= df['sym_on'].map(dt.datetime.toordinal)  
df['hosp_vis']= df['hosp_vis'].map(dt.datetime.toordinal)  
df['diff_sym_hos']= df['hosp_vis'] - df['sym_on']  
df=df.drop(['sym_on', 'hosp_vis'], axis=1)  
df['location'] = df['location'].astype(str)  
df['country'] = df['country'].astype(str)  
df['gender'] = df['gender'].astype(str)  
df['vis_wuhan'] = df['vis_wuhan'].astype(str)  
df['from_wuhan'] = df['from_wuhan'].astype(str)  
df['symptom1'] = df['symptom1'].astype(str)  
df['symptom2'] = df['symptom2'].astype(str)  
df['symptom3'] = df['symptom3'].astype(str)  
df['symptom4'] = df['symptom4'].astype(str)  
df['symptom5'] = df['symptom5'].astype(str)  
df['symptom6'] = df['symptom6'].astype(str)  
df.dtypes

数据说明

描述 值(用于分类变量) 类型 id患者编号不适用数字 location患者所属的位置遍布全球的多个城市字符串,分类 country患者的国家多个国家字符串,分类 gender患者性别男,女字符串,分类 age患者年龄不适用数字 sym_on患者开始注意到症状的日期不适用日期 hosp_vis病人去医院的日期不适用日期 vis_wuhan患者是否去过中国武汉是(1),否(0)数值,分类 from_wuhan患者是否属于中国武汉是(1),否(0)数值,分类 death患者是否因COVID-19而去世是(1),否(0)数值,分类 Recov患者是否康复是(1),否(0)数值,分类 symptom1. symptom2, symptom3, symptom4, symptom5, symptom6患者注意到的症状患者注意到多种症状字符串,分类

该研究考虑了11个分类输入特征和2个数字输入特征。目标变量是死亡/恢复。已填充新列“ diff_sym_hos”,以提供当天在医院发现和接受的症状之间的差异。

研究的重点是改善少数类别数据,即死亡== 1,从训练数据中提取了一个子集。子集按类别和数字分开,并传递给GAN模型。

df_minority_data=df.loc[df['death'] == 1]  

#Subsetting input features without target variable
df_minority_data_withouttv=df_minority_data.loc[:, df_minority_data.columns != 'death']
numerical_df = df_minority_data_withouttv.select_dtypes("number")  
categorical_df = df_minority_data_withouttv.select_dtypes("object")  
scaling = MinMaxScaler()  
numerical_df_rescaled = scaling.fit_transform(numerical_df)  
get_dummy_df = pd.get_dummies(categorical_df)    

#Seperating Each Category
location_dummy_col = [col for col in get_dummy_df.columns if 'location' in col]  
location_dummy = get_dummy_df[location_dummy_col]  
country_dummy_col = [col for col in get_dummy_df.columns if 'country' in col]  
country_dummy = get_dummy_df[country_dummy_col]  
gender_dummy_col = [col for col in get_dummy_df.columns if 'gender' in col]  
gender_dummy = get_dummy_df[gender_dummy_col]  
vis_wuhan_dummy_col = [col for col in get_dummy_df.columns if 'vis_wuhan' in col]  
vis_wuhan_dummy = get_dummy_df[vis_wuhan_dummy_col]  
from_wuhan_dummy_col = [col for col in get_dummy_df.columns if 'from_wuhan' in col]  
from_wuhan_dummy = get_dummy_df[from_wuhan_dummy_col]  
symptom1_dummy_col = [col for col in get_dummy_df.columns if 'symptom1' in col]  
symptom1_dummy = get_dummy_df[symptom1_dummy_col]  
symptom2_dummy_col = [col for col in get_dummy_df.columns if 'symptom2' in col]  
symptom2_dummy = get_dummy_df[symptom2_dummy_col]  
symptom3_dummy_col = [col for col in get_dummy_df.columns if 'symptom3' in col]  
symptom3_dummy = get_dummy_df[symptom3_dummy_col]  
symptom4_dummy_col = [col for col in get_dummy_df.columns if 'symptom4' in col]  
symptom4_dummy = get_dummy_df[symptom4_dummy_col]  
symptom5_dummy_col = [col for col in get_dummy_df.columns if 'symptom5' in col]  
symptom5_dummy = get_dummy_df[symptom5_dummy_col]  
symptom6_dummy_col = [col for col in get_dummy_df.columns if 'symptom6' in col]  
symptom6_dummy = get_dummy_df[symptom6_dummy_col]

定义生成器

生成器从潜在空间获取输入并生成新的合成样本。泄露修正线性单元(LeakyReLU)是在发生器和鉴别器模型中用于处理某些负值的函数。

它使用默认建议值0.2和适当的权重初始化程序“ he_uniform”使用。此外,在不同的层之间使用批处理归一化来标准化来自先前层的激活(零均值和单位方差)并稳定训练过程。

在输出层中,softmax激活函数用于分类变量,而sigmoid 函数用于连续变量。

def define_generator (catsh1,catsh2,catsh3,catsh4,catsh5,catsh6,catsh7,catsh8,catsh9,catsh10,catsh11,numerical):    
  #Inputting noise  from latent space
    noise = Input(shape = (70,))    
    hidden_1 = Dense(8, kernel_initializer = "he_uniform")(noise)    
    hidden_1 = LeakyReLU(0.2)(hidden_1)    
    hidden_1 = BatchNormalization(momentum = 0.8)(hidden_1)    
    hidden_2 = Dense(16, kernel_initializer = "he_uniform")(hidden_1)    
    hidden_2 = LeakyReLU(0.2)(hidden_2)    
    hidden_2 = BatchNormalization(momentum = 0.8)(hidden_2)    

    #Branch 1 for generating location data

    branch_1 = Dense(32, kernel_initializer = "he_uniform")(hidden_2)    
    branch_1 = LeakyReLU(0.2)(branch_1)    
    branch_1 = BatchNormalization(momentum = 0.8)(branch_1)    
    branch_1 = Dense(64, kernel_initializer = "he_uniform")(branch_1)    
    branch_1 = LeakyReLU(0.2)(branch_1)    
    branch_1 = BatchNormalization(momentum=0.8)(branch_1)    

    #Output Layer1
    branch_1_output = Dense(catsh1, activation = "softmax")(branch_1)    

    #Likewise, for all remaining 10 categories branches will be defined    
    #Branch 12 for generating numerical data 
    branch_12 = Dense(64, kernel_initializer = "he_uniform")(hidden_2)    
    branch_12 = LeakyReLU(0.2)(branch_3)    
    branch_12 = BatchNormalization(momentum=0.8)(branch_12)    
    branch_12 = Dense(128, kernel_initializer = "he_uniform")(branch_12)    
    branch_12 = LeakyReLU(0.2)(branch_12)    
    branch_12 = BatchNormalization(momentum=0.8)(branch_12)    

    #Output Layer12 
    branch_12_output = Dense(numerical, activation = "sigmoid")(branch_12)    

    #Combined output 
    combined_output = concatenate([branch_1_output, branch_2_output, branch_3_output,branch_4_output,branch_5_output,branch_6_output,branch_7_output,branch_8_output,branch_9_output,branch_10_output,branch_11_output,branch_12_output])    

    #Return model 

    return Model(inputs = noise, outputs = combined_output)    


generator = define_generator(location_dummy.shape[1],country_dummy.shape[1],gender_dummy.shape[1],vis_wuhan_dummy.shape[1],from_wuhan_dummy.shape[1],symptom1_dummy.shape[1],symptom2_dummy.shape[1],symptom3_dummy.shape[1],symptom4_dummy.shape[1],symptom5_dummy.shape[1],symptom6_dummy.shape[1],numerical_df_rescaled.shape[1])  
generator.summary()

定义鉴别器

鉴别器模型将从我们的数据(例如矢量)中获取样本,并输出关于样本是真实还是假的分类预测。这是一个二进制分类问题,因此在输出层中使用sigmoid 激活函数,在模型编译中使用二进制交叉熵损失函数。使用学习率LR为0.0002且建议的beta1动量值为0.5的Adam优化算法。

def define_discriminator(inputs_n):  
    #Input from generator
    d_input = Input(shape = (inputs_n,))    
    d = Dense(128, kernel_initializer="he_uniform")(d_input)  
    d = LeakyReLU(0.2)(d)  
    d = Dense(64, kernel_initializer="he_uniform")(d)  
    d = LeakyReLU(0.2)(d)  
    d = Dense(32, kernel_initializer="he_uniform")(d)  
    d = LeakyReLU(0.2)(d)  
    d = Dense(16, kernel_initializer="he_uniform")(d)  
    d = LeakyReLU(0.2)(d)  
    d = Dense(8, kernel_initializer="he_uniform")(d)  
    d = LeakyReLU(0.2)(d)  

    #Output Layer
    d_output = Dense(1, activation = "sigmoid")(d)  

    #compile and return model
    model = Model(inputs = d_input, outputs = d_output)  
    model.compile(loss = "binary_crossentropy", optimizer = Adam(lr=0.0002, beta_1=0.5), metrics = ["accuracy"])  
    return model  


inputs_n = location_dummy.shape[1]+country_dummy.shape[1]+gender_dummy.shape[1]+vis_wuhan_dummy.shape[1]+from_wuhan_dummy.shape[1]+symptom1_dummy.shape[1]+symptom2_dummy.shape[1]+symptom3_dummy.shape[1]+symptom4_dummy.shape[1]+symptom5_dummy.shape[1]+symptom6_dummy.shape[1]+numerical_df_rescaled.shape[1]  
discriminator = define_discriminator(inputs_n)  
discriminator.summary()

将生成器和鉴别器组合为GAN模型并完成训练。考虑了7,000个时期,并考虑了完整的少数派训练数据。

Def define_complete_gan(generator, discriminator):  
    discriminator.trainable = False  
    gan_output = discriminator(generator.output)  

    #Initialize gan
    model = Model(inputs = generator.input, outputs = gan_output)  

    #Model Compilation
    model.compile(loss = "binary_crossentropy", optimizer = Adam(lr=0.0002, beta_1=0.5))  
    return model  

completegan = define_complete_gan(generator, discriminator)  

def gan_train(gan, generator, discriminator, catsh1,catsh2,catsh3,catsh4,catsh5,catsh6,catsh7,catsh8,catsh9,catsh10,catsh11,numerical, latent_dim, n_epochs, n_batch, n_eval):  
    #Upddte Discriminator with half batch size
    half_batch = int(n_batch / 2)  
    discriminator_loss = []  
    generator_loss = []  
    #generate class labels for fake and real
    valid = np.ones((half_batch, 1))  
    y_gan = np.ones((n_batch, 1))  
    fake = np.zeros((half_batch, 1))  

    #training
    for i in range(n_epochs):  
        #select random batch from real categorical and numerical data
        idx = np.random.randint(0, catsh1.shape[0], half_batch)       
        location_real = catsh1[idx]  
        country_real = catsh2[idx]  
        gender_real = catsh3[idx]  
        vis_wuhan_real = catsh4[idx]  
        from_wuhan_real = catsh5[idx]  
        symptom1_real = catsh6[idx]  
        symptom2_real = catsh7[idx]  
        symptom3_real = catsh8[idx]  
        symptom4_real = catsh9[idx]   
        symptom5_real = catsh10[idx]  
        symptom6_real = catsh11[idx]          
        numerical_real = numerical_df_rescaled[idx]  

        #concatenate categorical and numerical data for the discriminator
        real_data = np.concatenate([location_real, country_real, gender_real,vis_wuhan_real,from_wuhan_real,symptom1_real,symptom2_real,symptom3_real,symptom4_real,symptom5_real,symptom6_real,numerical_real], axis = 1)  

        #generate fake samples from the noise
        noise = np.random.normal(0, 1, (half_batch, latent_dim))  
        fake_data = generator.predict(noise)  

        #train the discriminator and return losses and acc
        d_loss_real, da_real = discriminator.train_on_batch(real_data, valid)  
        d_loss_fake, da_fake = discriminator.train_on_batch(fake_data, fake)  
        d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)  
        discriminator_loss.append(d_loss)  

        #generate noise for generator input and train the generator (to have the discriminator label samples as valid)
        noise = np.random.normal(0, 1, (n_batch, latent_dim))  
        g_loss = gan.train_on_batch(noise, y_gan)  
        generator_loss.append(g_loss)  

        #evaluate progress
        if (i+1) % n_eval == 0:  
            print ("Epoch: %d [Discriminator loss: %f] [Generator loss: %f]" % (i + 1, d_loss, g_loss))  

    plt.figure(figsize = (20, 10))  
    plt.plot(generator_loss, label = "Generator loss")  
    plt.plot(discriminator_loss, label = "Discriminator loss")     
    plt.title("Stats from training GAN")  
    plt.grid()  
    plt.legend()  

latent_dim = 100  
gan_train(completegan, generator, discriminator, location_dummy.values,country_dummy.values,gender_dummy.values,vis_wuhan_dummy.values,from_wuhan_dummy.values,symptom1_dummy.values,symptom2_dummy.values,symptom3_dummy.values,symptom4_dummy.values,symptom5_dummy.values,symptom6_dummy.values,numerical_df_rescaled, latent_dim, n_epochs = 7000, n_batch = 63, n_eval = 200)

训练后的模型用于生成少数类的其他96条记录,以对每个类进行均等分割(159)。现在将生成的数值数据与原始数据的均值,标准差和方差进行比较;并根据每个类别的计数比较类别数据。

noise = np.random.normal(0, 1, (96, 100))  
generated_mixed_data = generator.predict(noise)  
columns=list(location_dummy.columns)+list(country_dummy.columns)+list(gender_dummy.columns)+list(vis_wuhan_dummy.columns)+list(from_wuhan_dummy.columns)+list(symptom1_dummy.columns)+list(symptom2_dummy.columns)+list(symptom3_dummy.columns)+list(symptom4_dummy.columns)+list(symptom5_dummy.columns)+list(symptom6_dummy.columns)+list(numerical_df.columns)  
mixed_gen_df = pd.DataFrame(data = generated_mixed_data, columns = columns)  
mixed_gen_df.iloc[:,:-3] = np.round(mixed_gen_df.iloc[:,:-3])  
mixed_gen_df.iloc[:,-2:] = scaling.inverse_transform(mixed_gen_df.iloc[:,-2:])  

#Original Data
original_df = pd.concat([location_dummy,country_dummy,gender_dummy,vis_wuhan_dummy,from_wuhan_dummy,symptom1_dummy,symptom2_dummy,symptom3_dummy,symptom4_dummy,symptom5_dummy,symptom6_dummy,numerical_df], axis = 1)  
def normal_distribution(org, noise):  
    org_x = np.linspace(org.min(), org.max(), len(org))  
    noise_x = np.linspace(noise.min(), noise.max(), len(noise))  
    org_y = scipy.stats.norm.pdf(org_x, org.mean(), org.std())  
    noise_y = scipy.stats.norm.pdf(noise_x, noise.mean(), noise.std())  
    n, bins, patches = plt.hist([org, noise], density = True, alpha = 0.5, color = ["green", "red"])  
    xmin, xmax = plt.xlim()  
    plt.plot(org_x, org_y, color = "green", label = "Original data", alpha = 0.5)  
    plt.plot(noise_x, noise_y, color = "red", label = "Generated data", alpha = 0.5)  
    title = f"Original data mean {np.round(org.mean(), 4)}, Original data std {np.round(org.std(), 4)}, Original data var {np.round(org.var(), 4)}\nGenerated data mean {np.round(noise.mean(), 4)}, Generated data {np.round(noise.std(), 4)}, Generated data var {np.round(noise.var(), 2)}"
    plt.title(title)  
    plt.legend()  
    plt.grid()  
    plt.show()  

Numeric_columns=numerical_df.columns  

for column in numerical_df.columns:  
    print(column, "Comparison between Original Data and Generated Data")  
    normal_distribution(original_df
, mixed_gen_df
)

原始数据和生成数据之间的年龄比较

原始数据与生成的数据之间的比较

原始数据和生成的数据之间的类别比较

特征原始数据产生的数据 0101 location_Hokkaido612951 genderfemale49146036 symptom2 cough621960

GAN过采样方法生成的数据几乎类似于原始数据,原始数据的误差约为1%。对于一些稀有类别,不会在所有类别值上生成数据。

遵循与原始研究中提到的相同的数据准备步骤,以查看通过使用GAN超采样与原始方法相比模型性能如何提高。所生成样本的独热编码数据被转换为原始数据帧格式。

# Getting Back Categorical Data in Original_Format from Dummies
location_filter_col = [col for col in mixed_gen_df if col.startswith('location')]  
location=mixed_gen_df[location_filter_col]   
location= pd.get_dummies(location).idxmax(1)  
location= location.replace('location_', '', regex=True)  
df_generated_data = pd.DataFrame()   
df_generated_data['location']=location  

country_filter_col = [col for col in mixed_gen_df if col.startswith('country')]  
country=mixed_gen_df[country_filter_col]   
country= pd.get_dummies(country).idxmax(1)  
country= country.replace('country_', '', regex=True)  
df_generated_data['country']=country  

gender_filter_col = [col for col in mixed_gen_df if col.startswith('gender')]  
gender=mixed_gen_df[gender_filter_col]   
gender= pd.get_dummies(gender).idxmax(1)  
gender= gender.replace('gender_', '', regex=True)  
df_generated_data['gender']=gender  

vis_wuhan_filter_col = [col for col in mixed_gen_df if col.startswith('vis_wuhan')]  
vis_wuhan=mixed_gen_df[vis_wuhan_filter_col]   
vis_wuhan= pd.get_dummies(vis_wuhan).idxmax(1)  
vis_wuhan= vis_wuhan.replace('vis_wuhan_', '', regex=True)  
df_generated_data['vis_wuhan']=vis_wuhan  

from_wuhan_filter_col = [col for col in mixed_gen_df if col.startswith('from_wuhan')]  
from_wuhan=mixed_gen_df[from_wuhan_filter_col]   
from_wuhan= pd.get_dummies(from_wuhan).idxmax(1)  
from_wuhan= from_wuhan.replace('from_wuhan_', '', regex=True)  
df_generated_data['from_wuhan']=from_wuhan  

symptom1_filter_col = [col for col in mixed_gen_df if col.startswith('symptom1')]  
symptom1=mixed_gen_df[symptom1_filter_col]   
symptom1= pd.get_dummies(symptom1).idxmax(1)  
symptom1= symptom1.replace('symptom1_', '', regex=True)  
df_generated_data['symptom1']=symptom1  

symptom2_filter_col = [col for col in mixed_gen_df if col.startswith('symptom2')]  
symptom2=mixed_gen_df[symptom2_filter_col]   
symptom2= pd.get_dummies(symptom2).idxmax(1)  
symptom2= symptom2.replace('symptom2_', '', regex=True)  
df_generated_data['symptom2']=symptom2  

symptom3_filter_col = [col for col in mixed_gen_df if col.startswith('symptom3')]  
symptom3=mixed_gen_df[symptom3_filter_col]   
symptom3= pd.get_dummies(symptom3).idxmax(1)  
symptom3= symptom3.replace('symptom3_', '', regex=True)  
df_generated_data['symptom3']=symptom3  

symptom4_filter_col = [col for col in mixed_gen_df if col.startswith('symptom4')]  
symptom4=mixed_gen_df[symptom4_filter_col]   
symptom4= pd.get_dummies(symptom4).idxmax(1)  
symptom4= symptom4.replace('symptom4_', '', regex=True)  
df_generated_data['symptom4']=symptom4  

symptom5_filter_col = [col for col in mixed_gen_df if col.startswith('symptom5')]  
symptom5=mixed_gen_df[symptom5_filter_col]   
symptom5= pd.get_dummies(symptom5).idxmax(1)  
symptom5= symptom5.replace('symptom5_', '', regex=True)  
df_generated_data['symptom5']=symptom5  

symptom6_filter_col = [col for col in mixed_gen_df if col.startswith('symptom6')]  
symptom6=mixed_gen_df[symptom6_filter_col]   
symptom6= pd.get_dummies(symptom6).idxmax(1)  
symptom6= symptom6.replace('symptom6_', '', regex=True)  
df_generated_data['symptom6']=symptom6  

df_generated_data['death']=1  
df_generated_data['death']=1  

df_generated_data[['age','diff_sym_hos']]=mixed_gen_df[['age','diff_sym_hos']]  
df_generated_data = df_generated_data.fillna(np.nan,axis=0)  

#Encoding Data
encoder_location = preprocessing.LabelEncoder()  
encoder_country = preprocessing.LabelEncoder()  
encoder_gender = preprocessing.LabelEncoder()  
encoder_symptom1 = preprocessing.LabelEncoder()  
encoder_symptom2 = preprocessing.LabelEncoder()  
encoder_symptom3 = preprocessing.LabelEncoder()  
encoder_symptom4 = preprocessing.LabelEncoder()  
encoder_symptom5 = preprocessing.LabelEncoder()  
encoder_symptom6 = preprocessing.LabelEncoder()  

# Loading and Preparing Data
df = pd.read_csv('Covid_Train_Oct32020.csv')  
df = df.drop('id',axis=1)  
df = df.fillna(np.nan,axis=0)  
df['age'] = df['age'].fillna(value=tdata['age'].mean())  
df['sym_on'] = pd.to_datetime(df['sym_on'])  
df['hosp_vis'] = pd.to_datetime(df['hosp_vis'])  
df['sym_on']= df['sym_on'].map(dt.datetime.toordinal)  
df['hosp_vis']= df['hosp_vis'].map(dt.datetime.toordinal)  
df['diff_sym_hos']= df['hosp_vis'] - df['sym_on']  
df = df.drop(['sym_on','hosp_vis'],axis=1)  

df['location'] = encoder_location.fit_transform(df['location'].astype(str))  
df['country'] = encoder_country.fit_transform(df['country'].astype(str))  
df['gender'] = encoder_gender.fit_transform(df['gender'].astype(str))  
df[['symptom1']] = encoder_symptom1.fit_transform(df['symptom1'].astype(str))  
df[['symptom2']] = encoder_symptom2.fit_transform(df['symptom2'].astype(str))  
df[['symptom3']] = encoder_symptom3.fit_transform(df['symptom3'].astype(str))  
df[['symptom4']] = encoder_symptom4.fit_transform(df['symptom4'].astype(str))  
df[['symptom5']] = encoder_symptom5.fit_transform(df['symptom5'].astype(str))  
df[['symptom6']] = encoder_symptom6.fit_transform(df['symptom6'].astype(str))  

# Encoding Generated Data  
df_generated_data['location'] = encoder_location.transform(df_generated_data['location'].astype(str))  
df_generated_data['country'] = encoder_country.transform(df_generated_data['country'].astype(str))  
df_generated_data['gender'] = encoder_gender.transform(df_generated_data['gender'].astype(str))  
df_generated_data[['symptom1']] = encoder_symptom1.transform(df_generated_data['symptom1'].astype(str))  
df_generated_data[['symptom2']] = encoder_symptom2.transform(df_generated_data['symptom2'].astype(str))  
df_generated_data[['symptom3']] = encoder_symptom3.transform(df_generated_data['symptom3'].astype(str))  
df_generated_data[['symptom4']] = encoder_symptom4.transform(df_generated_data['symptom4'].astype(str))  
df_generated_data[['symptom5']] = encoder_symptom5.transform(df_generated_data['symptom5'].astype(str))  
df_generated_data[['symptom6']] = encoder_symptom6.transform(df_generated_data['symptom6'].astype(str))  
df_generated_data[['diff_sym_hos']] = df_generated_data['diff_sym_hos'].astype(int)

模型比较

将原始数据分为训练和测试后,将GAN生成的数据添加到训练数据中,以将性能与基本模型进行比较。在实际(原始)分割测试数据上测试模型性能。

from sklearn.metrics import recall_score as rs  
from sklearn.metrics import precision_score as ps  
from sklearn.metrics import f1_score as fs  
from sklearn.metrics import balanced_accuracy_score as bas  
from sklearn.metrics import confusion_matrix as cm  
import numpy as np  
import pandas as pd  
import datetime as dt  
import sklearn  
from scipy import stats  
from sklearn import preprocessing  
from sklearn.model_selection import GridSearchCV  
from sklearn.ensemble import RandomForestClassifier  
from sklearn.ensemble import AdaBoostClassifier  
from sklearn.model_selection import train_test_split  
from sklearn.metrics import recall_score as rs  
from sklearn.metrics import precision_score as ps  
from sklearn.metrics import f1_score as fs  
from sklearn.metrics import log_loss  

rf = RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,  
criterion='gini', max_depth=2, max_features='auto',  
max_leaf_nodes=None, max_samples=None,  
min_impurity_decrease=0.0, min_impurity_split=None,  
min_samples_leaf=2, min_samples_split=2,  
min_weight_fraction_leaf=0.0, n_estimators=100,  
n_jobs=None, oob_score=False, random_state=None,  
verbose=0, warm_start=False)  
classifier = AdaBoostClassifier(rf,50,0.01,'SAMME.R',10)  

#Seperate TV in Generated Data
X1 = df_generated_data.loc[:, df_generated_data.columns != 'death']  
Y1 = df_generated_data['death']  

#Seperate TV in Original Data
X = df.loc[:, df.columns != 'death']  
Y = df['death']  

#Splitting Original Data
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.2,random_state=0)  

#Appending Generated Data to X_train
X_train1=X_train.append(X1, sort=False)  
Y_train1=Y_train.append(Y1)  
classifier.fit(X_train1,np.array(Y_train1).reshape(Y_train1.shape[0],1))  
pred = np.array(classifier.predict(X_test))  

recall = rs(Y_test,pred)  
precision = ps(Y_test,pred)  
r1 = fs(Y_test,pred)  
ma = classifier.score(X_test,Y_test)  
print('*** Evaluation metrics for test dataset ***\n')  
print('Recall Score: ',recall)  
print('Precision Score: ',precision)  
print('F1 Score: ',f1)  
print('Accuracy: ',ma)

公制基本模型得分*用增强的生成数据评分 召回分数0.75 0.83 精度分数11 F1分数0.86 0.9 准确性0.90.95

资料来源:表3基本模型指标

  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350612/

结论

与基本模型相比,所提出的模型提供了更加准确和可靠的结果,表明基于GAN的过采样克服了不平衡数据的局限性,并适当地扩充了少数类。

相关推荐

为何越来越多的编程语言使用JSON(为什么编程)

JSON是JavascriptObjectNotation的缩写,意思是Javascript对象表示法,是一种易于人类阅读和对编程友好的文本数据传递方法,是JavaScript语言规范定义的一个子...

何时在数据库中使用 JSON(数据库用json格式存储)

在本文中,您将了解何时应考虑将JSON数据类型添加到表中以及何时应避免使用它们。每天?分享?最新?软件?开发?,Devops,敏捷?,测试?以及?项目?管理?最新?,最热门?的?文章?,每天?花?...

MySQL 从零开始:05 数据类型(mysql数据类型有哪些,并举例)

前面的讲解中已经接触到了表的创建,表的创建是对字段的声明,比如:上述语句声明了字段的名称、类型、所占空间、默认值和是否可以为空等信息。其中的int、varchar、char和decimal都...

JSON对象花样进阶(json格式对象)

一、引言在现代Web开发中,JSON(JavaScriptObjectNotation)已经成为数据交换的标准格式。无论是从前端向后端发送数据,还是从后端接收数据,JSON都是不可或缺的一部分。...

深入理解 JSON 和 Form-data(json和formdata提交区别)

在讨论现代网络开发与API设计的语境下,理解客户端和服务器间如何有效且可靠地交换数据变得尤为关键。这里,特别值得关注的是两种主流数据格式:...

JSON 语法(json 语法 priority)

JSON语法是JavaScript语法的子集。JSON语法规则JSON语法是JavaScript对象表示法语法的子集。数据在名称/值对中数据由逗号分隔花括号保存对象方括号保存数组JS...

JSON语法详解(json的语法规则)

JSON语法规则JSON语法是JavaScript对象表示法语法的子集。数据在名称/值对中数据由逗号分隔大括号保存对象中括号保存数组注意:json的key是字符串,且必须是双引号,不能是单引号...

MySQL JSON数据类型操作(mysql的json)

概述mysql自5.7.8版本开始,就支持了json结构的数据存储和查询,这表明了mysql也在不断的学习和增加nosql数据库的有点。但mysql毕竟是关系型数据库,在处理json这种非结构化的数据...

JSON的数据模式(json数据格式示例)

像XML模式一样,JSON数据格式也有Schema,这是一个基于JSON格式的规范。JSON模式也以JSON格式编写。它用于验证JSON数据。JSON模式示例以下代码显示了基本的JSON模式。{"...

前端学习——JSON格式详解(后端json格式)

JSON(JavaScriptObjectNotation)是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。它基于JavaScriptProgrammingLa...

什么是 JSON:详解 JSON 及其优势(什么叫json)

现在程序员还有谁不知道JSON吗?无论对于前端还是后端,JSON都是一种常见的数据格式。那么JSON到底是什么呢?JSON的定义...

PostgreSQL JSON 类型:处理结构化数据

PostgreSQL提供JSON类型,以存储结构化数据。JSON是一种开放的数据格式,可用于存储各种类型的值。什么是JSON类型?JSON类型表示JSON(JavaScriptO...

JavaScript:JSON、三种包装类(javascript 包)

JOSN:我们希望可以将一个对象在不同的语言中进行传递,以达到通信的目的,最佳方式就是将一个对象转换为字符串的形式JSON(JavaScriptObjectNotation)-JS的对象表示法...

Python数据分析 只要1分钟 教你玩转JSON 全程干货

Json简介:Json,全名JavaScriptObjectNotation,JSON(JavaScriptObjectNotation(记号、标记))是一种轻量级的数据交换格式。它基于J...

比较一下JSON与XML两种数据格式?(json和xml哪个好)

JSON(JavaScriptObjectNotation)和XML(eXtensibleMarkupLanguage)是在日常开发中比较常用的两种数据格式,它们主要的作用就是用来进行数据的传...

取消回复欢迎 发表评论:

请填写验证码